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Conclusions

We extended the family of Surrogate Text Representations (STR) techniques with a new aapproach for transforming dense
real vectors into surrogate texts, suitable to be indexed and searched using off-the-shelf textual search engines. -

Our approach use a semi-orthonormal transformation to allow expanding the codebook size utilized in the encoding, whereas '.f-:
codebooks used by other STR approaches are constrained by the dimensionality of the dense vectors to be searched.

Improved recall-throughput trade-off on standard (non ad-hoc) textual search engines.
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