Solving k-Closest Pairs in High-Dimensional Data using Locality-Sensitive Hashing

Martin Aumüller and Matteo Ceccarello
IT University of Copenhagen, University of Padova

Problem Formulation

Input: Let (X, d) be a metric space. Let $S \subseteq X$ be a set of n points, and let $k \geq 1$ be an integer.

Task: Find k closest, distinct pairs $(r, s) \in S^{2}, \mathrm{r} \neq s$.

Naïve Approach: Compute all pairwise distances.

Running time: $O\left(n^{2}\right)$
Goal: Subquadratic running time with probabilistic guarantees.

Technique

Preprocessing: Build L LSH tries each of depth K, initialize empty $P Q$ to keep track of k points pairs and their distance.

Traversal strategy:

1. Collect all colliding pairs in all leaves of all tries, keep track of closest points.
2. Check termination: If current k-closest pair is at distance D, did we check enough repetitions to ensure result quality? If yes, return pairs.
3. Otherwise: Traverse trie one level up.

Example

13 points in \mathbb{R}^{2}. 5 -closest pairs are marked in ellipses.

Results

Theory

1. Adaptivity: Knowing all pairwise distances, there exists a best trie level to query. If OPT is the expected cost on that level, our algorithm carries out work O(OPT).
2. Expected subquadratic running time: $O\left(n^{2 \rho} k^{1-\rho} \log \frac{n}{\delta}\right), \rho \leq 1$ depends on contrast in distance distribution.

Practice

dataset	n	dimensions	RC $\propto 100$	RC $\odot 10000$
DeepImage	10000000	96	7615.56	2343.25
Glove	1193514	200	38.04	5.15
DBLP	277360	4405478	22.52	7.83
Orkut	2732271	8730857	20.97	2.99
Table 1: Datasets used in the experimental evaluation. The last two columns				
report the relative contrast at	100 pairs and 10000 pairs [17].			

Table 2: Rumning times. Missing values are for runs that timed out after 8 hours. The last column reports the time for the index construction (not applicable to XiaoEtA1), which is also included in the total time reported in the other columns

