
Minwise-Independent Permutations with Insertion and Deletion
of Features
Rameshwar Pratap
Indian Institute of Technology (IIT) Hyderabad, Telangana, India.
rameshwar@cse.iith.ac.in

Raghav Kulkarni
Chennai Mathematical Institute (CMI) Chennai, India.
kulraghav@gmail.com

Overview:
Broder et. al. [1] introduces the minHash algorithm that computes a low-dimensional sketch of high-
dimensional binary data that closely approximates pairwise Jaccard similarity. minHash has been
commonly used by practitioners in various big data applications.

In many real-life applications, the data is dynamic, and its feature sets evolve over time. We consider
the case when features are dynamically inserted and deleted in the dataset.

A naive solution repeatedly recomputes minHash w.r.t. the updated dimension – an expensive task
requiring fresh random permutations. We initiate this study and suggest algorithms that make the
minHash sketches adaptable to dynamic insertion and deletion of features. We show a rigorous
theoretical analysis of our algorithms. Empirically we observe a significant speed-up in the running
time while simultaneously offering comparable performance w.r.t. baselines.

MinHash [1] - Sketching Algorithm for Jaccard Similarity:

Figure 1: Jaccard Similarity.

Figure 2: MinHash [1].

Let Sd be the set of all permutations on [d]. We say that F ⊆ Sd is min-wise independent [1] if for
any set U ⊆ [d] and any u ∈ U , when π is chosen at random in F , we have

• Pr[min{π(U)} = π(u)] = 1/|U |.
For a permutation π ∈ F chosen at random and a set U ⊆ [d] minHash [1] is defined as follows

• minHashπ(U) = argminu∈U π(u).

For two data points, U, V ⊆ [d], and π is chosen at random in F , due to minHash we have

• Pr[minHashπ(U) = minHashπ(V)] = |U ∩ V |/|U ∪ V |.

Problem Statement & Our Contributions:
Problem Statement: (i) Focus on the problem of making minHash adaptable to dynamic in-
sertions and deletions of features. (ii) Consider the cases when data is sparse, and features are
inserted/deleted at randomly chosen positions from 1 to d.

• Contribution 1: We present algorithms that makes minHash sketch adaptable to single/multiple fea-
ture insertions. Our algorithm takes the current permutation and the corresponding minHash
sketch; values and positions of the inserted features as input and outputs the minHash sketch
corresponding to the updated dimension.

• Contribution 2: We also suggest algorithms that makes minHash sketch adaptable for sin-
gle/multiple feature deletions. It takes the data points, current sketch, and permutations
used to generate the same positions of the deleted features and outputs the minHash sketch
corresponding to the updated dimension.

Algorithm for One Feature Insertion:

Theorem 1. Let π = (a1 . . . , ad) be a minwise independent permutation, where ai ∈ [d], and r be a
random number from [d]. Then for any X ∈ {0, 1}d with |X| ≤ k, the permutation π′ = (a′1 . . . , a

′
d+1),

where a′i ∈ [d+ 1], obtained from Algorithm 1 is minwise Independent permutation, with probability at
least 1−O(k/d).

Theorem 2. Let π′m be the (d+1)-dimensional permutation outputted by Algorithm 1 by setting r = m.
Then, the sketch obtained from Algorithm 2 is the same to the sketch obtained with the permutation π′m
on X ′, that is, hnew := liftHash(π,m, b, hold) = minHashπ′

m
(X ′) .

• Algorithm 1 liftPerm is implicit and requires for proof of correctness.

• Algorithm 2 liftHash gives the updated sketch.

• Theorem 2 shows that π′ outputted by liftPerm is minwise-independent permutation, w.h.p.

• Theorem 3, show that the updated sketch hnew = minHashπ′(X ′).

• We extend this for multiple feature insertion and also give algorithms for single/multiple feature
deletion.

Experiments:
We perform our experiments on “Bag-of-Words” dataset [2], namely: NYTimes news articles (number
of points = 500, dimension = 102660), Enron emails (number of points = 2000, dimension= 28102), and
KOS blog entries (number of points = 2000, dimension = 6960).

We use two metrics: a) RMSE: to examine accuracy, and b) running time: to measure the
efficiency.
Experimental Setting for Feature Insertion: We first create a 500 dimensional minHash sketch using
500 independent permutations. Let n features are inserted at random positions. For each position, we
insert bit 1 with probability 0.1 and 0 with probability 0.9. We run the liftHash algorithm after each
feature insertion, and repeat it n times. We multipleLiftHash algorithm on the initial 500 dimensional
sketch with the parameter n. We compare our methods with vanilla minHash by generating a 500
dimensional sketch corresponding to the updated datasets after feature insertions.
Insights: Both of our algorithms offer comparable performance (under RMSE) with respect to
vanilla minHash. Simultaneously, we obtain significant speedups in running time compared to run-
ning minHash from scratch. A similar performances are also obtained for feature deletion algorithms.

Table 1: Speedup of our algorithms w.r.t their vanilla minHash version.

Experiment Method
NYTimes Enron KOS

Max. Avg. Max. Avg. Max. Avg.

Feature multipleLiftHash 54.91× 51.96× 9.61× 9.17× 24.4× 23.11×
Insertions liftHash 91.23× 87.38× 13.96× 12.66× 35.00× 35.50×
Feature multipleDropHash 109.5× 105.31× 18.6× 17.01× 46.02× 43.94×

Deletions dropHash 78.34× 72.79× 15.95× 14.89× 38.24× 35.71×

Figure 3: Comparison among liftHash, multipleLiftHash, and vanilla minHash on the task of feature insertions. Vanilla
minHash corresponds to computing minHash on the updated dimension.

Open questions: Major open questions of this work are to propose algorithms (i) when features
are inserted or deleted adversarially, and (ii) when the dataset is not sparse.

References
[1] Andrei Z. Broder, Moses Charikar, Alan M. Frieze, and Michael Mitzenmacher. Min-wise indepen-

dent permutations (extended abstract). In Proceedings of the Thirtieth Annual ACM Symposium
on Theory of Computing, STOC ’98, page 327–336, New York, NY, USA, 1998. Association for
Computing Machinery.

[2] M. Lichman. UCI machine learning repository, 2013.

