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Overview:

Broder et. al. [1] introduces the minHash algorithm that computes a low-dimensional sketch of high-
dimensional binary data that closely approximates pairwise Jaccard similarity. minHash has been
commonly used by practitioners in various big data applications.

In many real-life applications, the data 1s dynamic, and its feature sets evolve over time. We consider
the case when features are dynamically inserted and deleted in the dataset.

A naive solution repeatedly recomputes minHash w.rt. the updated dimension — an expensive task
requiring fresh random permutations. We initiate this study and suggest algorithms that make the
minHash sketches adaptable to dynamic insertion and deletion of features. We show a rigorous
theoretical analysis of our algorithms. Empirically we observe a significant speed-up in the running
time while simultaneously offering comparable performance w.r.t. baselines.

MinHash [1] - Sketching Algorithm for Jaccard Similarity:
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Figure 1: Jaccard Similarity.
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Figure 2: MinHash [1].

Let S, be the set of all permutations on |[d|. We say that F' C S; is min-wise independent [1] if for
any set U C [d| and any u € U, when 7 is chosen at random in F', we have

o Primin{=x(U)} = n(u)| = 1/|U]|.

For a permutation m € F' chosen at random and a set U C |d| minHash [1] is defined as follows
: minHash,(U) = arg min,ey m(u).

For two data points, U, V' C |d|, and 7 is chosen at random in F, due to minHash we have

. PrlminHash,(U) = minHash, (V)| = [U N V|/|U U V|.

Problem Statement & OQur Contributions:

Problem Statement: (i) Focus on the problem of making minHash adaptable to dynamic in-
sertions and deletions of features. (11) Consider the cases when data is sparse, and features are
inserted/deleted at randomly chosen positions from 1 to d.

e Contribution 1: We present algorithms that makes minHash sketch adaptable to single/multiple fea-
ture insertions. OQur algorithm takes the current permutation and the corresponding minHash
sketch; values and positions of the inserted features as input and outputs the minHash sketch
corresponding to the updated dimension.

e Contribution 2: We also suggest algorithms that makes minHash sketch adaptable for sin-
gle/multiple feature deletions. It takes the data points, current sketch, and permutations
used to generate the same positions of the deleted features and outputs the minHash sketch
corresponding to the updated dimension.

Algorithm for One Feature Insertion:

Algorithm 1: liftPerm(r,r). Algorithm 2: lifttHash(m, m,b, hyq).
Input: d-dim permutation 7, a number r. 1 Input: h,;4 := minHash,(X), 7, m € [d], b € {0,1}.

1
2 Output: (d + 1)-dim. permutation 7. 2 Output: hpey := liftHash(m, m, b, hyjq).
s forie {l,...,d+ 1} do s Denote am, = 7(m).
4 if + <r then /* m is the position of the inserted feature */
5 7' (1) = w(7) a if hyg < am then
6 else 5 hnew = hold
7 w' (i) = w(i — 1) 6 else
5 end 7 if b =1 then
o end 8 | Pnew = am
10 for 1€{1,...,d+1}/{r} do 9 end
11 if 7/(i) > 7’/(r) then 10 if b =0 then
12 | ?T’(?:) = ?T"(?:) +1 11 | hnew = hotd +1
13 end 12 end
14 end 13 end
15 return 7’/ 14 return hpey
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Theorem 1. Let 7 = (a1 ..., ay) be a minwise independent permutation, where a; € |d|, and r be a
random number from [d]. Then for any X € {0, 1Y with | X| < k, the permutation ©’ = (a] ..., d, 1)
where a; € |d + 1|, obtained from Algorithm 1 is minwise Independent permutation, with probability at
least 1 — O(k/d).

Theorem 2. Let 7], be the (d + 1)-dimensional permutation outputted by Algorithm 1 by setting r = m.

Then, the sketch obtained from Algorithm 2 is the same to the sketch obtained with the permutation 7/,
on X', that is, hpey = liftHash(m, m, b, h,;g) = minHashW;n(X’) :

e Algorithm 1 liftPerm is implicit and requires for proof of correctness.

 Algorithm 2 liftHash gives the updated sketch.

 Theorem 2 shows that 7’ outputted by liftPerm is minwise-independent permutation, w.h.p.
* Theorem 3, show that the updated sketch hy,eqy = minHash(X).

e We extend this for multiple feature insertion and also give algorithms for single/multiple feature
deletion.

Experiments:

We perform our experiments on “Bag-of-Words” dataset [2], namely: NYTimes news articles (number
of points = 500, dimension = 102660), Enron emails (number of points = 2000, dimension= 28102), and
KOS blog entries (number of points = 2000, dimension = 6960).

We use two metrics: a) RMSE: to examine accuracy, and b) running time: to measure the
efficiency.
Experimental Setting for Feature Insertion: We first create a 500 dimensional minHash sketch using
500 independent permutations. Let n features are inserted at random positions. For each position, we
insert bit 1 with probability 0.1 and 0 with probability 0.9. We run the liftHash algorithm after each
feature insertion, and repeat it n times. We multipleLiftHash algorithm on the initial 500 dimensional
sketch with the parameter n. We compare our methods with vanilla minHash by generating a 500
dimensional sketch corresponding to the updated datasets after feature insertions.
Insights: Both of our algorithms offer comparable performance (under RMSE) with respect to
vanilla minHash. Simultaneously, we obtain significant speedups in running time compared to run-
ning minHash from scratch. A similar performances are also obtained for feature deletion algorithms.

Table 1: Speedup of our algorithms w.r¢ their vanilla minHash version.

NYTimes Enron KOS
Max. Avg. | Max. Avg. | Max. Avg.

Feature multipleLiftHash [54.91x 51.96x | 9.61x 9.17x | 24.4x 23.11X
Insertions liftHash 91.23x 87.38x [13.96x 12.66x |35.00x 35.50x

Feature |multipleDropHash |109.5x 105.31x | 18.6x 17.01x 46.02x 43.94x

Experiment Method

Deletions dropHash 78.34x  T2.79%x [15.95x 14.89x |38.24%x 35.71x%
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Figure 3: Comparison among liftHash, multipleLiftHash, and vanilla minHash on the task of feature insertions. Vanilla
minHash corresponds to computing minHash on the updated dimension.

Open questions: Major open questions of this work are to propose algorithms (i) when features
are inserted or deleted adversarially, and (11) when the dataset 1s not sparse.
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