

Accelerating *k*-Means Clustering with Cover Trees

Andreas Lang and Erich Schubert

TU Dortmund, Data Mining, 44221 Dortmund

{firstname.lastname}@tu-dortmund.de

k-Means

- The sum of squared deviations is minimized.
- Current State of the Art algorithms use the triangle inequality to omit unnecessary distance computations.

Cover Tree

- Tree based index structure.
- Representation uses routing objects and radii.

Cover Tree properties:

- **1.** (nesting) $N_i \subset N_{i-1}$,
- **2.** (cover) $\forall q \in N_{i-1} \exists p \in N_i$: $d(p,q) \le 2^i$ and exactly one p is the parent of q,
- **3.** (separation) $\forall p, q \in N_i : d(p,q) \ge 2^i$.

Cover Tree and *k***-Means**

Input: Node x with routing object p_x and radius r_x , candidate cluster centers $c_i \in C$.

- **1.** calculate $\forall c_i \in C : d_i = d(p_x, c_i)$
- **2.** prune all c_i : $d_i 2r_x \ge min(d_i)$
- **3.** $\forall y \subset x$ prune c_i if $d_i 2(d(p_x, p_y) r_y) \ge min(d_i)$
- **4.** continue with *Step 1* for each *y* with the reduced candidate set

Assign node x to a cluster if there is only one remaining for x.

When switching strategies to Hamerly's or derived algorithms, set:

$$\begin{split} &u_{q \in y} = d(p_x, c_1) + d(p_x, p_y) + r_y, \\ &l_{q \in y} = d(p_x, c_2) - d(p_x, p_y) - r_y. \end{split}$$

Figure 1: Exemplary k-Means clustering using a Cover Tree. Necessary rounting objects and radii are highlighted.

Evaluation

- Room for improvement in the first iterations.
- Improvements mainly for medium to high k.
- Tree construction overhead less impactful when doing multiple runs.

(a) Runtime over iterations.

(b) Scaling with k.

Andreas Lang

Corresponding Author PhD Student at TU Dortmund Interested in clustering and data mining.

* Supported by Deutsche Forschungsgemeinschaft (DFG) within the Collaborative Research Center Sonderforschungsbereich 876 "Providing Information by Resource-Constrained Data Analysis", DFG project number 124020371, project A2.

SISAP 2023