
Algorithm

Runs of Side-Sharing Tandems in
Rectangular Arrays

Shoshana Marcus, Dina Sokol, Sarah Zelikovitz

2D Side-Sharing Tandems

ab
cd

ab
cd

ab
cd

ab
cd

Horizontal

Vertical

Contributions
Introduce idea of run of side-sharing

tandems: maximally extended chain of 2d side-

sharing tandems.

Demonstrate tight upper bounds on the

number of runs of side-sharing tandems that can

occur in a rectangular array.

Develop an efficient algorithm for locating

them.

time to locate
. runs of side-sharing tandems in n x n array.

Iteratively identify h-runs of each height
1. Identify all h-runs of height 1, by locating 1d

runs on each row, in linear time.
2. Find all h-runs of height 2, by linking runs on

adjacent rows.
3. Go through each height 3 ≤ k ≤ n (in

increasing order), and for each start row 1 ≤ i
≤ n-k+1, identify h-runs of height k by linking
h-runs of smaller heights on adjacent rows.

Background

Existing algorithms for locating side-sharing
tandems are far from optimal on a 2d array that
is sparsely populated with side-sharing tandems.

This work: locate the side-sharing tandems in
close to linear time, with respect to both the size
of the input array and the number of runs of
side-sharing tandems that occur.

Interval x-Intersection Query

Preprocess a set of ѱ intervals V

Query: Given an integer x > 0 and
interval u = [p, q] with integer
endpoints such that 1 ≤ p < n,
1 < q ≤ n, p < q, list all intervals in V
that intersect u by at least x units.

For ω results:
O(ω log ѱ / log log ѱ) query time
O(ѱ log ѱ / log log ѱ) preprocessing time

