Runs of Side-Sharing Tandems in Rectangular Arrays Shoshana Marcus, Dina Sokol, Sarah Zelikovitz
 College of Staten Island
 The City University of New York

2D Side-Sharing Tandems

Contributions

\checkmark Introduce idea of run of side-sharing tandems: maximally extended chain of 2 d sidesharing tandems.
\diamond Demonstrate tight upper bounds on the number of runs of side-sharing tandems that can occur in a rectangular array.
\diamond Develop an efficient algorithm for locating them.

Background

Existing algorithms for locating side-sharing tandems are far from optimal on a 2d array that is sparsely populated with side-sharing tandems.

This work: locate the side-sharing tandems in close to linear time, with respect to both the size of the input array and the number of runs of side-sharing tandems that occur.

Algorithm

$O\left(\left(n^{2}+\tau\right) \log n / \log \log n\right)$ time to locate τ runs of side-sharing tandems in $n \mathbf{x} n$ array.

Iteratively identify h-runs of each height $1 \leq k \leq n$.

1. Identify all h-runs of height 1 , by locating 1d runs on each row, in linear time.
2. Find all h-runs of height 2, by linking runs on adjacent rows.
3. Go through each height $3 \leq k \leq n$ (in increasing order), and for each start row $1 \leq i$ $\leq n-k+1$, identify h-runs of height k by linking h-runs of smaller heights on adjacent rows.

Interval x-Intersection Query

Preprocess a set of ψ intervals V
Query: Given an integer $x>0$ and interval $u=[p, q]$ with integer endpoints such that $1 \leq p<n$, $1<q \leq n, p<q$, list all intervals in V that intersect u by at least x units.

For ω results:
$O(\omega \log \psi / \log \log \psi)$ query time
$O(\psi \log \psi / \log \log \psi)$ preprocessing time

