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Abstract
Many fundamental applications in Computer Science, Data Science and others require a large amount of dis-

tance or similarity evaluations among pairs of objects; when the objects are complex (e.g., audio, video, images,
large texts, genome or protein sequences, . . . ) each similarity evaluation is already computationally expensive, and
if you have to do many of them the computational cost becomes very significant. Many authors have proposed the
use of sketches (a.k.a. surrogates, fingerprints) of the objects to speed up the similarity evaluations, for example, if
the sketches of two objects are dissimilar then the objects themselves are dissimilar too. In this work, we consider
similarity between setsA andB (in many applications the objects that we need to work with are already sets or can
be viewed as such, e.g., we can assimilate texts with the sets of distinct words that they contain). Quite intuitively,
if we pick random samples SA and SB from A and B, the similarity of SA and SB should be a good estimate of
the true similarity of A and B. And this should hold for many different similarity measures, including the well
known Jaccard index or the cosine similarity. We prove that σ(SA, SB) is an (asymptotically) unbiased estimator for
σ(A,B) for many different similarity measures σ, giving a general framework to prove such result; we also estab-
lish some “post-processing” that needs to be applied to random samples in order to remove undesirable biases in
the estimations, and provide a detailed mathematical analysis of the standard deviation of the estimations.

Introduction

Given sets A and B from some domain U , random samples SA and SB from A and B, respectively,
and a similarity measure σ:

• Is σ(SA, SB) a good estimator of σ(A,B)?

• If so, is it unbiased? Asymptotically unbiased?

•How does the accuracy of the estimation relate to the size of the samples?

• For which similarity measures do we have good estimators based on random samples?

•Will any random samples do?

The pioneer work of Broder [1] gave some answers for several of these questions in the case of
the Jaccard similarity and also for the so-called containment index c(A,B) that measures how much
A ⊂ B. Using random samples of fixed size, one gets unbiased estimators of both measures; the
accuracy was not considered.

Applications

Good estimators of similarity using samples will be quite useful in contexts in which we have a
large collection of sets A1, A2, . . . , AN and we must perform many similarity evaluations σ(Ai, Aj)
or σ(Ai, B), such as in classification tasks or in proximity searches. Substituting complex similarity
evaluations by something simpler has been successfully used in many approximate search schemes,
like Locality-Sensitive Hashing [2, 4].

• Extracting a random sample of fixed size k from Ai has cost Θ(|Ai| log k)

• If |Ai| is known then we can set k = k(|Ai|); quite intuitively, if |Ai| is large we should work with
larger samples

• Even if |A| is not known, one can use a scheme such as Affirmative Sampling [3] which will pro-
duce a random sample of (expected) size log |Ai| or |Ai|c (0 < c < 1), without prior knowledge of
|Ai| and using extra memory proportional to the size of the sample (not of |Ai|). In order to speed
up later computations it is often useful to sort the samples with cost Θ(|SAi

| log |SAi
|)

•Once we have random samples SAi
for each set Ai in the collection we can evaluate σ(SAi

, SB) ≈
σ(Ai, B) with cost Θ(|SAi

| + |SB|) vs Θ(|Ai| + |B|)–assuming that we have also sorted all Ai and B

• For example, suppose we apply K-means to our collection, where K is the number of clusters.
The cost of the algorithm is roughly O(N ||A| log |A| + N ·K · |A| · `), where |A| is the average size
of the Ai’s and ` the number of iterations until convergence (or we stop the algorithm). Using
samples the cost will be O(N ||A|+N |SA| log |SA|+N ·K · |SA| · `), now with a factor |SA| � |A| in
the main term.

A Few Technicalities

Many similarity measures are of the form |CP |
|C| , where C = A ⊕ B is a set that we obtain operating

the sets A and B, and CP ⊆ C is the subset of elements of C that satisfies a certain property. For
example,

Jaccard(A,B) =
|A ∩B|
|A ∪B|

If we are able to construct a random sample SC of C SC = SA ⊕ SB and SC ∩ CP could be easily
computed as well, then |SC∩CP ||SC| will be an unbiased estimator of |CP ||C| . This is a very well known
result in Statistics; we have shown that it is the case even if |SC| is a random variable, and we have
also been able to compute the variance of the estimator.

Another group of similarity measures, like the famous cosine similarity and Kulczynski 1 are of
the form f

(
|CP |
|C|

)
for some smooth function (f is continuously and infinitely differentiable in (0, 1)).

Despite

E
{
f

(
|SC ∩ CP |
|SC|

)}
6= f

(
E
{
|SC ∩ CP |
|C|

})
,

we show that it is true asymptotically if variable-size sampling is used, that is, if |SA| → ∞ and
|SB| → ∞when |A| → ∞ and |B| → ∞, by computing all central moments of the estimator.

Results

Assume we have a hash function h : U → [0, 1], and assume that the probability of collision is negli-
gible (provided that h has enough bits, we can safely assume that). Given a set X , we denote τX the

smallest hash value of any element in X ; given τ ∈ [0, 1], we denote X≥τ = {x ∈ X |h(x) ≥ τ} the
subset of elements in X with hash value ≥ τ .

Under reasonable assumptions about the hash function h, X≥τ is a random sample of X . Any
subset of size k = |X≥τ | from X is equally likely to be X≥τ . Therefore, to get a random sample of
size k from X , it is enough to collect the k elements in X with the largest hash values. There are
schemes which allow k = k(n), where n = |X|; even the need to know n in advance can be avoided:
for example, Affirmative Sampling, will produce samples of expected size Θ(log n) or Θ(nc) even
though n not known.

Theorem 1. Let σ be any of the similarity measures: Jaccard, Sørensen-Dice, containment coefficient,
cosine similarity, Kulczynski 1 (first Kulczynski coefficient), Kulczynski 2 (second) or correlation coeffi-
cient. Let SA and SB be random samples of A and B such that SA = A≥τSA and SB = B≥τSB , and let
τ = τ∗(SA, SB) = max(τSA\SB, τSB\SA, τSA∩SB). Then σ̂ = σ(S≥τA , S≥τB ) is an (asymptotically) unbiased
estimator of σ(A,B), that is,

E
{
σ(S≥τA , S≥τB )

}
∼ σ(A,B).

Moreover,

V
{
σ(S≥τA , S≥τB )

}
∼ σ(A,B) · (1− σ(A,B)) · O

(
E
{

1

min(|SA|, |SB|)

})
,

which implies that V {σ̂} → 0 if min(|SA|, |SB|)→∞ as |A|, |B| → ∞.
A similar result holds for other similarity measures like Simpson and Braun-Blanquet.

Jaccard Sørensen-Dice Correlation coeff.

Braun-Blanquet Cosine Kulczynski 1
Empirical estimates of several similarity measures

The x-axis in the plots above shows the size of the intersection of two sets A = {z1, . . . , zm}
and B = {zr, . . . , zr+n−1}, ranging from 0 (r = m + 1) to min(m,n) (r = 1). In the experiments
m = |A| = 1000 and n = |B| = 1500. The red solid lines show the value of σ(A,B). The blue dots
show the average of T = 10 estimations (sampling T times in each set); the blue bars depict the
standard variation.

Conclusions

The similarity of random samples can be used to accurately estimate the similarity of the sets they
represent. The samples being of significantly smaller size than the objects, these estimations can
be carried out using a tiny fraction of the computational resources one would need to compute the
“true” similarity. Some post-processing of the random samples is needed to avoid bias in the esti-
mation, but it does not introduce a serious computational penalty. We have shown that similarity
estimation using random samples is possible for many similarity measures between sets, and devel-
oped general techniques which might be useful to tackle other new measures not contemplated
here. Our careful and solid mathematical analysis (we haven’t just conducted an experimental
study) should allow a precise quantitative analysis of the impact of using estimations instead of
the “true” similarities in applications.

We are also working on the extension of the ideas and techniques here to other kind of objects like
multisets or partitions. For example, we have recently proven that the Rand index (a well known
measure of similarity) of two partitions of an N -element set can be accurately estimated without
checking the

(N
2

)
possible pairs of distinct elements.
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