An Alternating Optimization Scheme for Binary Sketches for Cosine Similarity Search Erik Thordsen and Erich Schubert

TU Dortmund, Informatik 8 Data Mining

\{firstname.lastname\}atu-dortmund.de

Binary Sketching \& Indexing

- Binary sketching defines a map $H: X \rightarrow\{0,1\}^{B}$
- "Quality" of sketches is induced by downstream applications
- For indexing, quality of sketches often
$Q(H) \approx \operatorname{Corr}_{x, y \in X}\left(d_{\text {Hamming }}(H(x), H(y)), d_{x}(x, y)\right)$
- Approximate k-nn search by, e.g.:
- Scan $H(X)$ for k^{\prime}-nn with $d_{\text {Hamming }}$ (cheap; many)
\bullet Refine $k^{\prime}-$ nn with d_{x} to k-nn (expensive; few)

The (Euclidean) Spherical Case

- Most natural separation by dot product
$\Rightarrow B$ hyperplanes - one per bit
\Rightarrow Tessellation of the d-sphere
- "Optimal" tessel. should have homogeneous sample counts, surface density integrals, and shapes
- "Balance" (α "entropy") of bits can be maximized without affineness

Alternating Optimization (HIOB)

- Idea: Improve initial hyperplanes by rotation
- Homogeneous sample counts induced by pairwise independent bits of hyperplanes
- Hope for surface area and shape to "work out" (by adding noise to X)
- Rotation by additive tangential vector (see Figure 1)
\Rightarrow Aggregation of multiple updates if desired
- Scale rotation angle to help with convergence
- Work on varying subsamples to speed process up
- Observation: With "good" initialization, always only updating "worst offenders" works best

(a) Before update

(b) After update

Figure 1: Example of an update with exactly two planes.

Evaluation

- Our approach improves bit "balance" (see Figure 2)
- "Indexing quality" of sketches improves aswell but can fall off (see Figure 2)
- Bruteforce search on optimized sketches can outperform some indices (see challenge)
- HNSW is still much faster, but builds much slower

(a) Bit "balance" (min \& mean)

(b) $10 @ 50-$ recall

Figure 2: Balance and recall over iterations of HIOB

Erik Thordsen

Corresponding Author
PhD Student at TU Dortmund Other topics:

- Intrinsic Dimensionality
- High-dimensional data

