Finding HSP Neighbors via an Exact, Hierarchical Approach
Cole Foster, Edgar Chávez, Benjamin Kimia
sisap

The Half-Space Proximal (HSP) Graph is a sparse proximity graph with a wide array of applications:

- Routing and edge pruning
- Instance-based classification
- Intrinsic dimensionality estimation
- Representing chemical networks
- Defining a notion of hubness/centrality

The HSP Graph is defined geometrically by the same inequalities as the Relative Neighborhood Graph (RNG), making it a super-set of linear complexity.

The HSP Algorithm on a query Q begins with a list L initialized with all points in the dataset and iteratively:

1. Finds the next HSP neighbor x_{1} as the closest point to Q in L.
2. Removes point $x_{2} \in L$ if both:

$$
\begin{aligned}
& d\left(Q, x_{1}\right)<d\left(Q, x_{2}\right) \\
& d\left(x_{1}, x_{2}\right)<d\left(Q, x_{2}\right)
\end{aligned}
$$

Importance of Exactness:

- Existing approaches are approximate, missing long range links by constraining the HSP algorithm to a local neighborhood.
- The exact HSP Graph is monotonic, a highly desired property in graph-based similarity search.
- The t-spanner conjecture of the HSP Graph requires exactness and leads to its application as a distance oracle.

