Local Intrinsic Dimensionality and Graphs: *Towards LID-aware Graph Embedding Algorithms*

Miloš Savić, Vladimir Kurbalija, Miloš Radovanović

University Novi Sad, Faculty of Sciences Department of Mathematics and Informatics Novi Sad, Serbia

{svc, kurba, radacha}@dmi.uns.ac.rs

https://graphsinspace.net/

Introduction

■ LID: characterize complexity of data space around a data point

- Theoretical LID framework by Houle [2]
- $-LID \equiv$ indiscriminability of the distance function

■ Node2Vec hyperparameters

- NRW: the number of random walks starting from each node
- LRW: the length of each random walk
- p and q: parameters controling random walk biases
- Our LID-elastic Node2Vec extensions

■ Various LID applications: clustering, outlier detection, deep learning (robustness against adversarial attacks), etc.

Graph embeddings

Our motivation & contributions

- 1. Discussion of potential LID applications to graphs
- 2. NC-LID: LID-related measure for nodes in a graph that is based on their natural (local) communities

3. Two LID-elastic extensions of Node2Vec [1] based on NC-LID

LID and Graphs

- Existing LID models and estimators: tabular dataset (data points in Euclidean space), smooth distance functions
- \blacksquare LID estimators based on distances from a reference data point x to its k closest neighbors
 - -MLE-based LID estimator
 - -Estimating LID within tight localities
- Two ways for applying LID estimators to graphs

- lid-n2v-rw: personalizes NRW and LRW per node according to NC-LID
- lid-n2v-rwpq: extends lid-n2v-rw by personalizing p and q for each pair of connected nodes according to NC-LID values

Experiments and Results

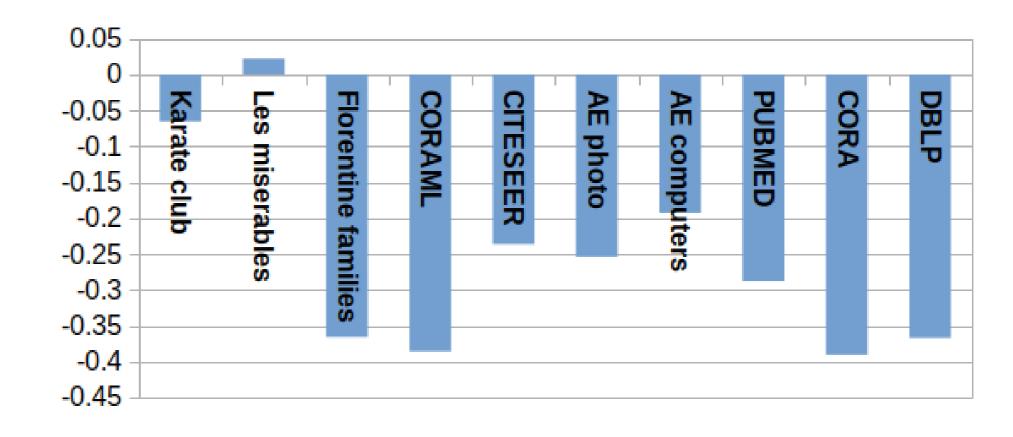


Figure 1: The Spearman correlation between NC-LID of nodes and their F_1 scores.

	n2v		lid	-n2v-rw	lid	-n2v-rwpq		
Graph	F_1	Dim.	F_1	Dim.	F_1	Dim.	Best	I[%]
Karate club	0.78	100	0.83	50	0.85	100	lid-n2v-rwpq	9.4
Les miserables	0.81	100	0.80	100	0.83	200	lid-n2v-rwpq	2.7
Florentine families	0.96	100	0.96	100	0.96	100	all	0.0
CORAML	0.65	25	0.66	50	0.63	25	lid-n2v-rw	1.3
CITESEER	0.24	10	0.25	10	0.28	10	lid-n2v-rwpq	18.7
AE photo	0.50	50	0.52	50	0.49	50	lid-n2v-rw	4.9
AE computers	0.45	50	0.47	100	0.42	50	lid-n2v-rw	4.7
PUBMED	0.39	50	0.43	50	0.42	50	lid-n2v-rw	9.4
CORA	0.57	25	0.60	50	0.59	50	lid-n2v-rw	3.9
DBLP	0.40	25	0.44	25	0.53	50	lid-n2v-rwpq	31.7

- -By applying LID estimators directly on graph-based distances
- -By estimating LID of nodes on graph embeddings \rightarrow LID-based evaluation of graph embedding algorithms

NC-LID: LID-related Measure for Graph Nodes based on Natural Communities

 \blacksquare Ball around a data point \rightarrow subgraph S around a node n ■ GB-LID: local intrinsic discriminability of a graph-based distance function *dist* considering S as the observed locality of n

$$\mathbf{GB-LID}(n) = -\ln\left(\frac{|S|}{T(n,S)}\right),$$

- |S| the number of nodes in S
- $\bullet r$ the maximal distance between n and any node from S
- T(n, S) the number of nodes whose distance from n is smaller than or equal to r
- NC-LID is an instance of GB-LID
 - S natural (local) communities [3]

 Table 1: Comparison of Node2Vec and LID-elastic Node2Vec embeddings.

Conclusions and Future Work

■ NC-LID can point to weak parts of Node2Vec embeddings ■ Node2Vec embeddings can be improved by LID-elastic extensions based on NC-LID (lower link reconstruction errors) LID-related metrics based on expanding subgraph localities Correlations between LID-related scores and centrality metrics Biased random walk strategies based on natural communities

References

[1] Aditya Grover and Jure Leskovec. Node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD'16, page 855–864, 2016.

• *dist* – shortest-path distance

 \square NC-LID $(n) = 0 \rightarrow n$ has a "convex" natural community Higher NC-LID implies more "concave" natural communities

LID-elastic Node2Vec Variants

Main idea: Hyper-parameters of graph embedding algorithms personalized for nodes / pairs of nodes and adjusted according to NC-LID

Main premise: high NC-LID nodes will have higher link reconstruction errors in embeddings due to more complex natural communities [2] Michael E. Houle. Dimensionality, discriminability, density and distance distributions. In 2013 IEEE 13th International Conference on Data Mining Workshops, pages 468–473, 2013.

[3] Andrea Lancichinetti, Santo Fortunato, and János Kertész. Detecting the overlapping and hierarchical community structure in complex networks. *New Journal of Physics*, 11(3):033015, 2009.

Acknowledgements

This research is supported by the Science Fund of Republic of Serbia, #6518241, AI – GRASP.

