MUNI C4E

SIMILARITY SEARCH FOR AN EXTREME APPLICATION: EXPERIENCE & IMPLEMENTATION Vladimir Mic, Tomáš Raček, Aleš Křenek, and Pavel Zezula Masaryk University, Brno, Czech Republic

PROTEIN CHAINS & CHALLENGES

Topic – Similarity Search in Protein Chains

- Each protein consists of one or more parts *protein chains*
- Modelled by balls and sticks
 - → describe positions of atoms in 3D space and bonds between them

OUR SEARCH ENGINE

Data Preprocessing

- Search in "Protein Data Bank in Europe"
 - 495,085 protein chains, tens of thousand added every year
- Store distances to 512 pivots
- ... use them to create *sketches*:

- Some of the atoms determine structure of the whole protein chain
 - \rightarrow carbon alpha atoms *CA Atoms*

Similarity of Protein Chains – Almost Metric Space

- Similarity = Q-score of protein chains summarises matching CA atoms and their actual distance in 3D Euclidean space
- Extreme complexity \rightarrow heuristics to estimate Q-score are used
- Widely used heuristic violates the Q-score symmetry
 - and thus triangle inequality

- bit-strings in the Hamming space, approximate space of chains
- *Short* and *long sketches* (320, and 1024 bits)
- Short sketches are defined by just 61 pivots
- Long sketches are defined by 489 pivots, out of 512 pre-selected
- Mapping of protein chain distances to Hamming distances of long sketches
- build advanced *pivot permutation-based index*: *PPP-codes*

Gradual Search with Intermediate Results

- 3 search phases, assume query chain *q*:
 - \rightarrow search for *k* most similar chains up to distance *r*:
 - 1st phase evaluates 61 distances of *q* to pivots
 - creates a short sketch of *q*
 - evaluates Ham. dists. on short sketches to return k IDs of protein chains with the most similar short sketches

- Violation are rather small, but should be considered
 - → *pivot permutation-based* techniques are robust enough

Size of Protein Chains

• Even heuristics suffer from the size of big protein chains:

• Extreme tail of biggest pr. chains

- GUI asynchronously evaluates corresponding *k* Q-scores, and 2nd phase starts
- 2nd phase evaluates other 428 distances of q to pivots
 - creates a long sketch of *q*
 - transforms search radius r to the Hamming radius r_{Ham}
 - evaluates Ham. dists. on long sketches to return k IDs of protein chains with sketches up to distance r_{Ham}
 - GUI asynchronously evaluates Q-scores, and 3rd phase starts
- 3rd phase evaluates remaining 23 distances of q to pivots
 - uses PPP-codes to generate a stream of 5,000 most promising protein chains for q
 - uses long sketches to check each of these 5,000 chains
 - * compares the Hamming distance of its long sketch and the sketch of q with r_{Ham}
 - evaluates Q-score of each non-filtered protein chain
 - on median, 4,810 / 5,000 chains are filtered out by sketches
- i.e., we need just 702 dist. comps. to evaluate the query, on median
- \rightarrow causes extreme tail of distance computation times
- Newly discovered chains are rather big
- We should efficiently search for similar chains to big query chains

The Most Efficient Search

Efficient similarity search must minimise the number of Q-score computations

... especially in case of big query chains

Results – Medians over 1,000 query chains

	Q-score comps.	Search Accuracy	Search Time
Current engine	???	100 %	183 s
1st phase	61	46.7 %	0.18 s
2nd phase	429	66.7 %	1.1 s
3rd phase	702	100 %	2.5 s

• Most difficult *q* is evaluated in 4 hours by the current engine

• Our phases evaluate it in 4 s, 13 min, and 102 min

https://similar-pdb.cerit-sc.cz