
ORGANIZING SIMILARITY SPACES USING METRIC HULLS

Miriama Jánošová1, David Procházka1, Vlastislav Dohnal1
1Faculty of Informatics, Masaryk University, Brno, Czech Republic

ORGANIZING SIMILARITY SPACES USING METRIC HULLS

Miriama Jánošová1, David Procházka1, Vlastislav Dohnal1
1Faculty of Informatics, Masaryk University, Brno, Czech Republic

Introduction

A novel concept of a metric hull has recently been
introduced to encompass a set of objects. The hull
representation of a group C [1] is defined as a set
of boundary objects selected from C, such that ev-
ery other object from C is covered by them. Such
boundary objects are referred to as hull objects. In
Fig. 3, the hull objects are highlighted.
Following a metric-hull computation method that
generates a hierarchy of metric hulls, we propose
a metric index structure for unstructured and com-
plex data, a Metric Hull Tree (MH-tree). We provide
a bulk-loading procedure for MH-tree construction.
With respect to the design of the tree, we provide
an implementation of an approximate kNN search
operation. Finally, we utilize the Profimedia dataset
to evaluate MH-tree’s various building and ranking
strategies and compare the results to M-tree.

MH-Tree Structure

Fig. 1 MH-Tree Structure

Metric Hull Tree (MH-Tree) [2] is a hierarchical n-ary
tree index structure. It is composed of two types of
nodes, specifically leaf and internal nodes.
• Leaf node encapsulates a bucket – a storage of c
objects.

• Internal node contains a list of a pointers (ptri) to
children nodes and their hull representations (Hi)

Bulk-Loading

We propose creating the MH tree by a bulk loading
procedure in a bottom-up manner. Firstly, we group
all the database objects into leaf nodes:
• Select the furthest object of from the database -
new cluster’s nucleus

• Repeat until the size of cluster is equal to c:
– Execute 1-NN query for each cluster object to

identify the set of closest yet-not-clustered ob-
jects – candidates

– Select oc from candidates, such that the sum of
distances between oc and cluster objects is the
smallest and add it to the cluster

• Compute the hull representation of a node

Fig. 2 Select the next bucket object

Next, we apply the merging procedure to collapse all
the leaves into the first layer of internal nodes, such
that each node has a children. This merging proce-
dure is repeated until only a single node is obtained
– the root of the tree.
• Merging procedure:
– Select the furthest node nf and execute a-NN

query to obtain a nearest nodes to nf to form an
internal node

– Compute the hull representations of a new inter-
nal node from the hull representations of children

– The proximity of nodes is measured by the dis-
tance between their hulls:

d(H1,H2) = min
∀h1∈H1,∀h2∈H2

d(h1, h2).

Fig. 3 Distance between hulls

Searching in MH-Tree

Searching in the MH-Tree for nearest neighbors of
a query employs a priority queue PQ of nodes to
be processed. However, the algorithm here provides
only approximate results since we assume a limit on
the number of visited objects during search and also,
the manner in which the MH-Tree is built introduces
some impressions. During the traversal, nodes are
visited based on the likelihood of containing relevant
answers. The probability is determined by RANK,
which is defined exclusively based on the distances
to the hull objects.

• The tree traversal starts in the root node, and
nodes are visited with respect to PQ

• When an internal node is visited, add its child
nodes to PQ

• When a leaf node is visited, take objects from the
bucket and update the answer

• Terminate the traversal after visiting the limited
amount of nodes

Ranking Nodes During Search

For leaf nodes, we define the ordering of nodes as

RANKLEAF (q,H) = min
∀h∈H

d(q, h).

For internal nodes, the RANKINT (q,H, k) function is
defined as follows:
−max∀h∈H d(q, h) q is covered by H, k = 1

max∀h∈H d(q, h) q is not covered by H, k = 1

−min∀h∈H d(q, h) q is covered by H, k > 1

min∀h∈H d(q, h) q is not covered by H, k > 1

Experimental Evaluation

We performed the experiments over the Profimedia
dataset [3]. It is a collection of 4096-D vectors ex-
tracted from Photo-stock images by Convolutional
Neural networks. We used two different sizes of
data, specifically 10k and 100k images. To mea-
sure the similarity between the data, we employ Eu-
clidean distance.

• Methodology:
– Employ approximate k-NN search with termina-

tion after 5% up to 100% visited objects
– Measure the trade-off between accuracy and ef-

ficiency as

recall =
| S ∩ Sa |
| S |

,

where set S is a result of precise k-NN search
and Sa a result of approximate search

– Compare the results with M-Tree optimized by
Slim-down insertion

• Measured recall :

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100
Visited objs(%)

MH−Tree M−Tree
1NN

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100
Visited objs(%)

MH−Tree M−Tree
50NN

0.2

0.3

0.4

0.5

0.6

1 2 5 10 20 50 100
k

MH−Tree M−Tree
10% Visited objs

0.4

0.5

0.6

0.7

0.8

1 2 5 10 20 50 100
k

MH−Tree M−Tree
20% Visited objs

Conclusion

We introduced a novel index structure MH-Tree
build upon principles of the concept of metric hulls.
The fat factor of MH-tree suggests the metric hull
representation of the data is rather compact.
We compared the best-performing setup of MH-tree
with the M-tree optimized by the Slim-down algo-
rithm. The results showcase MH-tree outperforms
M-tree significantly – fewer nodes are visited for the
same recall. Specifically, the performance of MH-
tree was higher by 30-40% on average depending
on the number of extracted neighbors.

References
[1] Matej Antol, Miriama Janosova, and Vlastislav Dohnal. Metric hull as similarity-aware operator for representing unstructured data. Pattern Recognition

Letters, pages 1–8, 2021. doi: 10.1016/j.patrec.2021.05.011.

[2] David Procházka. Indexing structure based on metric hulls. Bachelor thesis, Masaryk University, FI, 2021. URL https://is.muni.cz/th/jk21s/.

[3] David Novak, Michal Batko, and Pavel Zezula. Large-scale image retrieval using neural net descriptors. In Proceedings of the 38th International ACM
SIGIR Conference on Research and Development in Information Retrieval, pages 1039–1040. ACM, 2015. ISBN 978-1-4503-3621-5.

Supported by the ERDF "CyberSecurity, CyberCrime and Critical Information Infrastructures Center of Excellence"
(No.CZ.02.1.01/0.0/0.0/16_019/0000822)

