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Abstract

Semi-supervised classification methods are
specialized to use a very limited amount of labelled
data for training and ultimately for assigning labels
to the vast majority of unlabelled data. Label
propagation is such a technique that assigns labels
to those parts of unlabelled data that are in some
sense close to labelled examples and then uses
these predicted labels in turn to predict labels of
more remote data. Here we propose to not
propagate an immediate label decision to neighbors
but to propagate the label probability distribution.
This way we keep more information and take into
account the remaining uncertainty of the classifier.
We employ a Bayesian schema that is simpler and
more straightforward than existing methods. As a
consequence we avoid to propagate errors by
decisions taken too early. A crisp decision can be
derived from the propagated label distributions at
will. We implement and test this strategy with a
probabilistic k-nearest neighbor classifier, proving
competitive with several state-of-the-art competitors
in quality and more efficient in terms of
computational resources.

General Schema
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Here we see three probability density functions for
the three classes over the sepal length attribute in
the Iris dataset. We propose to propagate label
probability distributions to unlabelled instances in a
semi-supervised manner using the (estimated) prob-
ability density for each class starting from a straight-
forward Bayesian schema:
With the prior class probability Pr(c) for each class
c ∈ C and Bayes theorem, the probability for in-
stance x to belong to a class c can be estimated
by:

Pr(c|x) ∝ f̂ (x|c) Pr(c)∑
ci∈C f̂ (x|ci) Pr(ci)

(1)

where f̂ is some estimate of the probability density
(which could be a direct probability estimate, if some
classifier delivers that).
Such estimated label probability distributions are as-
signed to all instances x ∈ U , such that the label yi
of instance xi is in fact a label distribution:

yi = (Pr(c1|xi),Pr(c2|xi), · · · ,Pr(cn|xi))> (2)

Example model using kNN

To test this concept in semi-supervised classification
we employ a probabilistic kNN classifier to estimate
label probability distributions in a non-parametric
way and describe an algorithm to propagate label
probability density distributions using kNN, resulting
in an algorithm kNN Label Distribution Propagation
(kNN-LDP). While we keep all information of the
label probability distributions as long as possible, we
can at any point derive a crisp labelling of a query
object if needed, taking the maximum of the
assigned class probabilities. In the supervised
scenario of using the kNN classifier, the label
probability distribution for some instance x is given
by the class-conditional density estimates based on
the k nearest neighbors of x taken over the labeled
training data L [1, 2]:

f̂ (x|cj) =
|{x` ∈ kNN(x) ∩ cj}|
|{x` ∈ L ∩ cj}| · VolkNN(x)

(3)

where | · | denotes the cardinality of a set and
VolkNN(x) denotes the volume needed to cover k
nearest neighbors of x, centered at x. The shape of
this volume will depend on the employed distance
function. Note, however, that the volume cancels
nicely out when putting this into Eq. (1).
In the semi-supervised scenario tackled here, an
instance among the nearest neighbors might not
have a crisp label but a label probability distribution
itself, or no label for instances ∈ U . For getting a
well-defined probability distribution we can treat the
“unknown” case as a special class. Accounting for
partial labels in Eq. 3 thus yields

f̂ (x|cj) =
∑

x`∈kNN(x)Pr(cj|x`)∑
x`∈LPr(cj|x`) · VolkNN(x)

(4)

Using this in Eq. (1), the probability for each class c
in the label distribution, depending on the label
probability distributions of the k nearest neighbors, is
therefore given by

Pr(c|x) =
∑

x`∈kNN(x)Pr(c|x`)
| kNN(x)|

(5)

Experimental Evaluation
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Figure 1: Critical difference plots over a 10-fold cross validation
using 5%,10% and 20% labelled data.
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Figure 2: Runtime in seconds scaling with dataset size.

Propagation Algorithm

To use as much information as possible for the
label assignment in just two passes over the data
we start with the instances where most information
is available, that is where the sum of the class
probabilities over the neighbors (except for the
class “unknown”) is maximal, and continue to
process instances with decreasing order w.r.t. this
available information (which might change over
time). This requires checking all neighborhoods in
advance. For the sake of efficiency, the forward
and reverse k nearest neighbors should be
indexed in this first pass.

w(x) =
∑

c∈C\{“unknown”}

Pr(c|x) (6)

for all x ∈ U do
index forward and reverse k nearest neighbors ( kNN,RkNN )
x.w ←

∑
c∈C\{unknown} Pr(c|x) {Eq. (6)}

end for
PQU ← priority-queue(U) {decreasing order w.r.t. x.w}
while PQU .size > 0 do

x← PQU .getMax()
if x.w > 0 then

x.y ← (Pr(c|x))c∈C {Eqs. (2) and (5)}
for all p ∈ RkNN(x) do

p.w ←
∑

c∈C\{unknown} Pr(c|p) {Eq. (6)}
PQU .update(p)

end for
L← L ∪ {x}

else
x.y ← unknown
for all p ∈ PQU do

p.y ← unknown
L← L ∪ {p}

end for
PQU ← ∅

end if
end while

Figure 3: Figure showing the two first iterations of the label
distribution propagation algorithm. Instances are being la-
belled in the order from most to least label information (Eq
6).

Conclusion

We studied an elegant non-parametric method with
a clear interpretation in terms of density estimation
and Bayesian reasoning here that performs as good
as or better than state-of-the-art methods on a large
collection of datasets even though it was put on a
disadvantage compared to other methods in two as-
pects:
1. In cases where a vertex in the kNN graph be-

longs to a component with no label information
our method simply abstains from making a deci-
sion which as such will always count as an error.

2. We performed grid search optimization of several
parameters for the competing Laplacian methods
and the methods using an RBF kernel. Without
such parameter tuning, these methods would not
be able to achieve reasonable performance. No
such parameter optimization was done for the k-
value for methods using nearest neighbor infor-
mation.

In terms of efficiency and scalability, our method is
clearly outperforming the competitors.
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