
Progressive Query-driven Entity Resolution
SISAP 2021 Doctoral Symposium Paper

Luca Zecchini
University of Modena and Reggio Emilia

luca.zecchini@unimore.it

Advisors: Sonia Bergamaschi and Giovanni Simonini, University of Modena and Reggio Emilia

Conclusions
Early results confirm the benefits in terms both of

reduction of performed comparisons and of progressive

emission of the results, paving the way for new and

more comprehensive solutions to ER tasks.

Many challenges are open: we want to find other cases

to be optimized, study the impact of blocking and missing

values, and the benefits for TOP(K) queries, integrate

BrewER with other data preparation/cleaning steps, and

analyze its possible impact on other classification tasks.

The formalized algorithm, many other results and a

further exploration will be presented in a dedicated

research paper.

Entity Resolution (ER)

Individuating inside a dataset the records that refer

to the same real-world entity (duplicates).

Hard task, due to dirty and ambiguous data:

- words written in different ways (or even misspelled);

- cases of homonymy and synonymy;

- missing or wrong values.

Traditional (batch) approach to ER Progressive query-driven approach to ER (BrewER)

A data scientist can be only interested in just a

portion of the dataset (e.g., for data exploration)

and this interest can be expressed by using a query.

In traditional (batch) approach, first we need to

perform ER on the whole dataset, then we can run

the query on its cleaned version.

This implies a lot of useless comparisons, needed

to produce entities that will surely not appear in the

result of the query, wasting time, resources, and

money (e.g., pay-as-you-go contracts in the cloud),

which are always limited.

Thus, we need a new approach, with two characteristics:

❑ Query-driven: it performs ER only on the portion of

dataset useful to answer the query (according to its

WHERE clauses);

❑ Progressive: it returns the resulting entities in the

right order (defined by the ORDER BY clause) as

soon as they are obtained.

This is exactly the aim of BrewER,

our algorithm designed to run clean

queries on dirty data.

❑ First, we perform a preliminary filtering of

the blocks: if a block contains at least a

seed record, i.e., a record that satisfies one

of the WHERE clauses, it can produce a

useful entity and passes the filtering (if the

clauses are in AND, the block must contain

at least a seed record for each clause to

pass the filtering);

❑ All the records appearing in the blocks that

pass the filtering are inserted in an

Ordering List (OL), each one with a list of

its neighbours (records appearing in the

same blocks);

❑ Then, we iterate on OL:

❑ OL is sorted according to the Ordering Key

(OK), i.e., the attribute used in the ORDER

BY clause, defining the emission priority

❑ We check the first element:

❑ If it is one of the original records, we look for

its duplicates among its neighbours and

replace all the matching records with a

single representative record presenting the

aggregated value for OK;

❑ If it is one of these representative records,

we perform ER and check for its emission.

BrewER in action

BrewER: Progressive Query-driven Entity Resolution

BrewER adopts an agnostic approach to blocking and matching functions.

Early Results

Tested on real-world datasets, BrewER clearly

shows its progressive nature. The Query

Recall, computed on batches of queries, is the

number of emitted resulting entities out of the

total number of resulting entities to be emitted. An

adaptation of QDA (query-driven, but not

progressive) is used as batch baseline.

Cameras

USB sticks

USB sticks

Organizations

BrewER vs Batch ER (QDA) Optimization for discordant ordering

Optimization for Discordant Ordering

An optimization can be used for the frequent case of

discordant ordering (MAX/ASC or MIN/DESC). In this case,

it is possible to insert in OL only the seed records, while the

other records appear just as neighbours, reducing the number

of comparisons. This is possible since in this case updating

OK for the first element postpones its emission, guaranteeing

the correctness of the emission order.


