Progressive Query-driven Entity Resolution
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Hard task, due to dirty and ambiguous data: Traditional (batch) approach to ER Progressive query-driven approach to ER (BrewER)
- words written in different ways (or even misspelled) A data scientist can be only interested In just a Thus, we need a new approach, with two characteristics:
- cases of homonymy and synonymy; i i . . .
e ymy ynonymy pocrltlﬁ_n _of the dataset (e.q., fodr bdata_exploratlon) 0 Query-driven: it performs ER only on the portion of
- missing or wrong values. and this interest can be expressed by using a query. dataset useful to answer the query (according to its
. | WHERE clauses);
Megapixels In traditional (batch) approach, first we need to - | |
000 R oerform ER on the whole dataset, then we can run 0 Progressive: It returns the resulting entities in the
canon =0 | the query on its cleaned version. right order (defined by the ORDER BY clause) as
cannon rebel xti 150.00 soon as they are obtained.
. This implies a lot of useless comparisons, needed
nikon CE:I:) 10.2 130.00 ’ . -
. . to produce entities that will surely not appear in the This Is e_XaCﬂy th_e aim of BrewER,
cannon nikon kiss x3 @ 50.00 result of the query, wasting time, resources, and our algorithm designed to run clean
canon eos 400d 10.1 110.00 money (e.g., pay-as-you-go contracts in the cloud), gueries on dirty data.

nikon 10.2 175 .00 which are always limited.

BrewER: Progressive Query-driven Entity Resolution

a First, we perform a preliminary filtering of
BrewER adopts an agnostic approach to blocking and matching functions. the blocks: if a block contains at least a

seed record, I.e., a record that satisfies one

m Case without blocking: all records are neighbours of the WHERE clauses, it can produce a

r, canon eos 400d 10.0 185.00 se0 (@) -~SORTING.. Match? useful entity and passes the filtering (if the
lauses are in AND, the block must contain

bel xti 10.1 150.00 v v v v v ¢ ’
- E— e ‘ﬁ' X v X v X at least a seed record for each clause to

r; nikon d200 10.2 130.00 SEED rz . r4 """" pass the filtering);
" CYMPUS o i 209 e 150. 90. a All the records appearing in the blocks that
rs canon eos 400d 10.1 110.00 SEED R e pass the filtering are Inserted In an
re nikon d-200 10.2 175.00 SEED Ordering List (OL), each one with a list of
o foofa its neighbours (records appearing in the
Q1 - SQL on clean data 0. same blocks);

SELECT Brand, Model, Megapixels, Price QO Then, we iterate on OL:
FROM Camera

..SORTING... . . .
WHERE Brand LIKE ‘%canon%’ @ SORTING aQ OL is sorted according to the Ordering Key
AND Model LIKE ‘d’ y (OK), i.e., the attribute used in the ORDER
ORDER BY Price DESC r, BY clause, defining the emission priority
0 90. a We check the first element:

Q2 - SQL on dirty data

SELECT VOTE(Brand), VOTE(Model), VOTE(Megapixels), MAX(Price)
FROM Camera

GROUP BY ENTITY

HAVING VOTE(Brand) LIKE ‘%canon%’

AND VOTE(Model) LIKE ‘d’

ORDER BY MAX(Price) DESC @ .SORTING... Q If it is one of these representative records,
we perform ER and check for its emission.

S . a Ifitis one of the original records, we look for

its duplicates among Iits neighbours and

v Brand | Model | Megapixels | Price($) replace all the matching records with a

canon eos 400d 10.1 185.00 single representative record presenting the
aggregated value for OK;

BrewER In action

Early Results Optimization for Discordant Ordering Conclusions
Tested on real-world datasets, BrewER clearly An optimization can be used for the frequent case of Early results confirm the benefits in terms both of
shows its progressive nature. The Query discordant ordering (MAX/ASC or MIN/DESC). In this case, reduction of performed comparisons and of progressive
Recall, computed on batches of queries, is the It Is possible to insert in OL only the seed records, while the emission of the results, paving the way for new and
number of emitted resulting entities out of the other records appear just as neighbours, reducing the number more comprehensive solutions to ER tasks.
total number of resulting entities to be emitted. An of comparisons. This iIs possible since Iin this case updating Many challenges are open: we want to find other cases
adaptation of QDA (query-driven, but not OK for the first element postpones its emission, guaranteeing to be optimized, study the impact of blocking and missing
progressive) is used as batch baseline. the correctness of the emission order. values, and the benefits for TOP(K) queries, integrate
BrewER with other data preparation/cleaning steps, and
Name Records Duplicates Entities (Mean Size) Attributes Ordering Key analyze its pOSSible impact on other classification tasks.
SIGMOD20 [7, 14] 13.58k 12.01k 3.06k (4.439) 5 Megapixels Cameras
SIGMOD21 1.12k 1.08k 190 (5.879) 5 Price USB sticks The formalized algorithm, many other results and a
Altosight 12.47k 12.44k 453 (27.534) 5 Price USB sticks . . . \
Funding [ — TR 311k (5.600) — —— Organizations further exploration will be presented in a dedicated
research paper.
BrewER vs Batch ER (QDA) Optimization for discordant ordering
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