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Introduction

 biological motivation

– all organisms – DNA – proteins

 proteins

– cells function and structure

– basic blocks – amino acids

– linear sequence of amino acids

(”linear sequence over 20-letter subset of the English alphabet”)

 peptides

– short sequences
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 method for unknown protein sequences identification

– proteins are splitted to peptides (one spectrum for each peptide is captured)

– peptides are splitted to fragments

– mass to charge ratio (x axis); intensity of occurrence (y axis)

– y-ions (“from the right”); b-ions (“from the left”)

Tandem Mass Spectrometry (MS/MS)



 main idea: different amino acids ~ different masses

 graph approach “de novo”

– direct spectra interpretation using graph algorithms

– many paths in graph represent many peptide sequences corresponding to 
an experimental spectrum; quality of identification is about 30%

 database approach

– search database of already known protein sequences

– theoretical spectra are generated from stored sequences and
compared with experimental spectra

Interpretation of Spectra 



Typical Problems of Interpretation 

 noise 

– up to 80% of peaks

– peaks of fragment ions with unpredictable chemical structure

 single amino acids (or groups) with similar masses can be mistaken

 some peaks important for identification (y or b-ions) are missing

– fragment ions do not arise

 modifications of amino acids

– amino acids masses are changed



 cosine similarity approaches are commonly mentioned in literature

 high-dimensional boolean vectors; compact representation <7, 13, 18, 23, 27, 34>

 bad indexability

 precursor mass

– mass of a peptide before splitting (known as an additional information)

 precursor mass filter

– spectra are indexed by their precursor mass

 d’A = dA + precursor mass filter

– indexable very well

− it supports only spectra without chemical modifications

Angle Distance (dA)



 for each number in the compact representation, the number with minimum 
difference in the other vector is found

 the average of nth roots from the set of minima is computed

 dHP can be also combined with precursor mass filter (for the spectra without 
chemical modifications)

Parametrised Hausdorff Distance (dHP)



 increasing n in nth root function

+ the impact of noise peaks is lower
(i.e., the similarity between the spectra is modeled better)

+ the distance is semimetric (n ≥ 2)

– the indexability is worse

Parametrised Hausdorff Distance (dHP)



 controls the metricity (T-error) of the function v

– the ratio of triplets, which do NOT satisfy the triangle inequality

 T-modifier

– either concave or convex increasing function

– e.g., Fractional-Power (FP) or Rational-Bézier-Quadratic (RBQ) modifier

– concave function (w > 0)

• increases the number of triplets

• indexability is worse

• exact search, but slower

– convex function (w < 0)

• decreases the number of triplets

• indexability is better

• approximate search, but faster

 M-tree, Pivot Table

TriGen Algorithm



Indexability of dHP and dA

 dHP – the indexability is better with increasing T-error tolerance

 dA – about 35% of all pairwise distances in dA=1 (uncorrectable)

 d’HP and d’A – indexable very well



Average Query Time

 dHP – 1.6x faster than sequential scan

 dA – 2.5x slower

 d’HP and d’A – 32.9x faster and 19.8x faster



Correctness of Identification - kNN Queries
 correct peptide sequences are cumulated among a few nearest neighbors

 1-NN taken from the 100NN result is more likely to be correct than when 

taking 1-NN from 10NN result

 e.g., at T-error tol. 0.06, correctness 75%, speed-up 1.7x, DC ratio 9.7%

 1.4x higher for dHP than dA

 d’HP 85.7%  and  d’A  89.6%



M-tree and Pivot Table Comparison

 the Pivot table is faster than M-tree as long as all its blocks are stored in 

main memory, otherwise it becomes inefficient (moreover, it is 

outperformed by sequential scan)

 distance computations are misleading for Pivot tables



Conclusions
 parametrised Hausdorff distance (dHP)

– models the similarity among spectra very well

– can be utilized by MAMs when TriGen algorithm is employed

– if the T-error is higher, then indexability is much better, the search is faster and 

correctness of interpretation is a little lower

 angle distance (dA)

– we verified that it has limitations for utilization by MAMs

 d’HP or  d’A (in combination with the precursor mass filter)

– indexable very well

– an extension for mass spectra with chemical modifications may be very hard



Future Work
 dealing with modifications in the mass spectra - precursor mass of modified 

peptides can differ by more than a few tens to hundreds Daltons (e.g., M+16)

 PM-tree, …

 dHP seems to be suitable for 

particular kinds of modifications 

without an improvement

 NM+16INTFVPSGK

 IYFM+16AGSSK

 NSLESYAFNM+16K

 30% correctness (1 NN)

 50% (10NN)

 84% (5000NN)

 ~ 60,000 peptides at 1,500 Da

 interval of precursor mass would 

be extended ~ 60,000 x 16

 d’HP and d’A  ??



Thank You…

Mass spectrometry (18.2 %)


