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Metric Space Searching

I A universe X of black-box objects.
I A finite database U ⊆ X .
I A distance function d : X × X → R+.
I It respects the triangle inequality.
I Range queries (q, r), q ∈ X , r ∈ R+.
I Other queries (nearest neighbor, etc.)
I Wish to minimize the number of evaluations of d .
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What attracted me first to metric space searching?
I A paper by Ricardo Baeza-Yates et al., on Fixed Queries

Trees (FQT), 1994.
I It was a tree where the search had to enter several

branches.
I The analysis of the search cost was very different from the

usual ones on trees (always ending up in O(log n)).
I The recurrence was like this:

T (n) =
∑

1≤i≤k

qi T (pin), T (1) = 1

I The solution was an intriguing T (n) = nα...
I where α is the solution to∑

1≤i≤k

qipαi = 1.
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What attracted me first to metric space searching?

I Clearly, this was a different beast, defying usual
assumptions on balancing, arity, etc.

I I started to work on this field, expecting to be Wonderland
for an algorithmicist.

I I soon became disappointed.
I Let us see why...
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In the beginning...

I Researchers tried to apply asymptotic analysis, as in any
algorithmic discipline.

I Several nice results were obtained.
I But... they were difficult to verify experimentally.
I Unlike in other areas of algorithmics, reality refused to

behave as it should.
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What happened?

I The specificities of metric spaces were too important to
ignore.

I For example the dimensionality or probabilistic distribution
of the space.

I But these were either too difficult to model, or there was no
consensus.
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Instead...

I Researchers gave up on this line of formal analysis.
I They either resorted to pure experimentation...
I ... or to complex cost models.
I The latter were successful predicting how a particular

index would perform.
I But not for understanding why the index performed in that

way.
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In addition...

I There were no established testbeds and datasets.
I So each researcher used his/her favorite examples.
I While the discipline has been evolving in finding practically

efficient indexes...
I it has been involving in the theoretical aspect: you have an

idea, you try it. It works on some dataset? Bingo!
I Why it works? Will it work elsewhere? How it scales?
I I have not seen many introspective analyses of that kind for

several years.
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Asymptotic analysis

I This was more or less the state of Computer Science
before asymptotic analysis was invented.

I My thesis is that asymptotic analysis can give us important
insights even if it is useless for precise predictions.

I In algorithmics, it is used along the design process, to
understand what is going on and in which direction should
we aim.

I I believe it can be used for metric indexes as well:
I To understand why an index behaves in some way.
I To guide the direction of optimizations and tuning.
I To design new indexes.
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For example...
I Once upon a time, Edgar Chávez and I realized that

Vantage Point trees (VPTs), which were binary balanced
trees, could be analyzed as a particular case of the
equation I showed before.

I The solution was O(nα), for

q1pα + q2(1− p)α = 1

I Here, q1 and q2 are the probabilities that the query enters
into the first and second child, and add up more than 1.

I If p = 1/2 as in the VPT, you get α = log2(q1 + q2).
I However, if the distribution of distances is concentrated,

the best p is far from 1/2.
I This led us to design the List of Clusters (LCs), a simple

and extremely efficient index for high-dimensional spaces.

G. Navarro Analyzing Metric Space Indexes



In this talk...

I I will review what is known about asymptotic analysis of the
most common families of metric indexes.

I I will also present new results, that explains some facts
experimentally verified but not totally understood.

I I will show how asymptotic analysis, even under gross
simplifications (that render it useless for predicting), helps
explaining behaviors that are empirically well known.

I I will argue that we need to retain some kind of
introspective analysis, or our discipline will become a
bunch of heuristics.
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Pivot Tables: Structure

I Choose k “pivots” {c1, c2, . . . , ck}.
I Store an n × k table d [u, ci ] = d(u, ci) for all u, ci .
I At search time:

1. Compute every d(q, ci).
2. If d(q, ci) ≤ r , output ci .
3. If |d(q, ci)− d [u, ci ]| > r for some i , discard u.
4. Compare q directly with each not discarded u.
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Pivot Tables: Structure
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Pivot Tables: Analysis

I f (x): histogram of distances of the metric space X .
I We assume points of U and queries q are chosen

randomly from X .
I f (x) is also the histogram of ci if chosen at random from U.
I F (x): accumulated histogram of f (x).
I For random q, the probability of d(q, ci) = x is f (x).
I Given that x , the probability that ci does not discard a

random u ∈ U is that of d(u, ci) ∈ [x − r , x + r ].
I That is, F (x + r)− F (x − r−).
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Pivot Tables: Analysis
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Pivot Tables: Analysis

I Then the probability that a random q ∈ X does not discard
u is

e =

∫ +∞

0
f (x) · (F (x + r)− F (x − r−)) dx

where 0 ≤ e ≤ 1.
I The larger r or the more concentrated f (x), the closer e to

1.
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Pivot Tables: Analysis

I Then the probability that u is not discarded is ek .
I And the expected cost of the search is

T (n) = k + nek .

I One can achieve logarithmic search time using sufficiently
many pivots:

k∗ = log1/e n + log1/e ln(1/e).

I Then the search time becomes

T (n) = log1/e n +
1

ln(1/e)
= O(log n);

where the constant worsens as e grows.
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Pivot Tables: Analysis

I Still the O(log n)-type behavior does not depend on r nor
the space.

I Yet, one might have memory only for k = β · log n < k∗

pivots.
I In this case the growth rate changes drastically:

T (n) = β log n + neβ ln n = O
(

n1−β ln(1/e)
)
,

which is of the form nα for some 0 ≤ α ≤ 1 that depends
on f (x), on r , and on the available memory.
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Pivot Tables: Lessons

I We can achieve logarithmic search time.
I Using the right number of pivots makes a great difference.
I In many cases one does not store sufficient pivots.
I This may explain the observed results: Pivots are not so

different from other intrinsically O(nα)-time schemes.
I On the other hand, there are analytical and empirical

results about achieving O(1) time by properly choosing the
pivots (Faragó, AESA).

I This stresses the importance of choosing pivots correctly
(e.g. LAESA).
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Trees for Pivots and Rings: Structure

I A tree structure where an element c ∈ U acts as the root.
I Each children represents a range of distances to c.
I Each subtree is organized recursively.
I At search time,

1. Compute d(q, c) and report c if d(q, c) ≤ r .
2. Recursively enter every subtree whose range (`i , `i+1]

intersects [d(q, c)− r ,d(q, c) + r ].
I This encompasses many techniches: BKTs, MTs, FQTs,

VPTs, MVPTs, VPFs, LCs.
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Trees for Pivots and Rings: Structure
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Trees for Pivots and Rings: Analysis

I The global histogram f (x) is also that of c, if c is chosen at
random.

I Let us call `i the cutting distances.
I We call pi = F (`i+1)− F (`i) the probability of an element

of U being inserted at the i-th subtree.
I And qi = F (`i+1 + r)− F (`i − r) ≥ pi is the probability of

the query entering the i-th subtree.
I Assume those pi values remain constant within subtrees

(as in MTs, VPTs, MVPTs, LCs).
I To simplify, assume further that the qis do not change (big

assumption!).
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Trees for Pivots and Rings: Analysis
I The expected number of distance computations satisfies

the recurrence:

T (n) = 1 +
∑

1≤i≤k

qi T (pin), T (1) = 1

I The solution is of the form:

T (n) =
snα − 1
s − 1

= O(nα), s =
∑

1≤i≤k

qi ,

I where α is the solution to∑
1≤i≤k

qipαi = 1.
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Trees for Pivots and Rings: Analysis

I The solution to α is unique.
I It is smaller as the qis are closer to the pis.
I It is α = 0 only for pi = qi (exact search), where the

solution is actually of the familiar form O(log n).
I This illustrates how the exact vs approximate searching

drastically changes the algorithmic nature of the problem.
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Trees for Pivots and Rings: Analysis

FQTs

I There is only one pivot per depth, acting as the root of all
those subtrees.

I The search cost is that to compare with the pivots,
O(log1/pmax

n)...
I ... plus a recurrence similar to the previous one, giving

exactly nα, same α.
I Thus, same analytic structure, better constants.
I Confirmed by experiments.
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Trees for Pivots and Rings: Analysis

FQTs

I FQTs are so similar to pivots... why the O(log n) behavior
does not show up?

I Because leaves are not compared to further pivots, but
directly with q.

I FHQTs: all leaves are forced to the same depth h, even if
following a unary path.

I They do behave just like pivots.
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Trees for Pivots and Rings: Analysis
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Trees for Pivots and Rings: Analysis
MVPTs

I They use t pivots per node and use all ranges to branch.
I The recurrence is of the form

T (n) = t +
∑

1≤i1...it≤k

qi1 . . . qit T (pi1 . . . pit n)

I and its solution is

T (n) = ((t + st − 1)nα − t)/(st − 1)

I This is of the same order as before (same α) but the
constant is 1 + t/(st − 1).

I The constant improves as t grows, suggesting maximum t .
I Partially confirmed by experiments.
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Trees for Pivots and Rings: Lessons

I FQTs, FHQTs and MVPTs show that pivot tables and trees
are not so different.

I Trees manage to use linear space, and this limits them to
O(nα)-like behavior.

I Pivot tables can use O(n log n) space, at which point they
can achieve O(log n)-time queries.

I In general, using trees is justified only if one has not
enough memory.
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Trees for Pivots and Rings: Analysis & Lessons

What arity should we use?

I Assume for simplicity all pi = p = 1/k .
I Assume also a flat histogram qi = q = p + δ.
I Then s = qk and α = logk (1 + δk).
I The best α as a function of δ is achieved for higher k as r

grows, yielding anyway larger α values.
I This recommends using a higher arity as the search

becomes more difficult.
I Intuitively, this gives a chance of discarding at least some

subtrees that do not intersect the query ball.
I Partial experiments confirm, again, this intuition.
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Trees for Pivots and Rings: Analysis

Should we balance the trees?
I Assume we fix arity k .
I Assume for now a flat histogram qi = pi + δ.
I We seek the best partitioning pi , minimizing the α that

solves
∑

pαi (pi + δ) = 1.
I If we set all pi = p = 1/k , the equation becomes

kpα(p + δ) = k1−α(1/k + δ) = 1

I with solution α = logk (1 + δk), as we have seen.
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Trees for Pivots and Rings: Lessons

Should we balance the trees?
I If we perturb just two pi values, by ε, the new equation is

(k−2)pα(p+δ)+(p+ε)α(p+ε+δ)+(p−ε)α(p−ε+δ) = 1

I Implicit differentiation reveals that α increases as ε
deviates from zero.

I Thus the balanced partition is the best for a flat histogram,
i.e. an easy space.
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Trees for Pivots and Rings: Analysis

Should we balance the trees?
I Assume now that we are in dimension D, that is,

F (x) = xD, x ∈ [0,1].
I To simplify, assume k = 2.
I We want the x such that p = F (x) minimizes the α that

solves

F (x)αF (x + r) + (1− F (x))α(1− F (x − r)) = 1

I We use implicit differentiation to obtain the optimum α as a
function of x and r , yet there is no closed-form expression.
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Trees for Pivots and Rings: Lessons

Should we balance the trees?
I Still we can handle it numerically to gain intuition.
I Already low dimensions such as D = 2, for retrieving

0.01% of the data set, recommend leaving p1 = 0.24 of the
histogram to the left and p2 = 0.76 to the right, so as to
obtain α = 0.035.

I As we let D or r grow, the analysis recommends more
unbalanced partitions to obtain the optimum α, which is
nevertheless higher.

I Widely backed by experiments
I Intuition: we have many many pivots per element!
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Trees for Centers and Clusters: Structure

I They choose k centers c1 . . . ck , with their subtrees
T1 . . .Tk .

I Other elements are inserted into those subtrees with some
criterion.

I They try that each ci is spatially compact.
I They compute covering radii cri = maxu∈Ti d(ci ,u).
I The construction proceeds recursively inside each Ti .
I Queries q are compared to each ci , which is reported if

d(q, ci) ≤ r .
I Then we enter each subtree where d(q, ci) ≤ cri + r .
I BSTs, M-trees, Antipole Trees, LCs.
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Trees for Centers and Clusters: Structure
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Trees for Centers and Clusters: Analysis

I Assume we choose centers at random.
I Thus pi = F (cri) is the probability of a random element

falling within the area covered by Ti .
I And qi = F (cri + r), that of a query q having to enter Ti .
I If the cluster balls cover the space, it must hold∑

1≤i≤k pi ≥ 1.
I Equality is desirable, holding only if the balls are disjoint.
I This is usually impossible, but can be approached by a

good clustering.
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Trees for Centers and Clusters: Analysis
I Assume we achieve roughly the same probability mass for

clusters, pi = p, k ≥ 1/p.
I Assume this arity and relative mass is maintained in

subtrees.
I The probability mass of a cluster at depth h is ph.
I If elements are inserted at random inside any suitable

cluster, the expected leaf depth is h∗ = logk n.
I At depth h ≤ logk n there are kh clusters.
I The probability of the query ball intersecting a cluster at

depth h is F (F−1(ph) + r).
I The overall query cost is

T (n) =
h∗∑

h=1

khF (F−1(ph−1) + r)
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Trees for Centers and Clusters: Analysis
I To gain intuition, assume a flat histogram in [0,1],

F (x) = x .
I Thus F (F−1(ph−1) + r) = ph−1 + r , and

T (n) =
h∗∑

h=1

kh(ph−1 + r)

I If kp = 1 (perfect clustering, very unlikely), the solution is

T (n) = k logk n +
k

k − 1
(n − 1)r

I If kp > 1, the solution is

T (n) ≤ k
kp − 1

n1−logk (1/p) +
k

k − 1
r n

I Again, of the form O(nα).
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Trees for Centers and Clusters: Lessons

I A good clustering is essential: α increases with kp.
I Indeed, a perfect clustering achieves logarithmic time.
I Increasing k is good when the search is difficult: it reduces

the overhead associated to nr , which is dominant in this
case.

I Decreasing k is good when the search is easy: it reduces
the term that multiplies O(nα).

I Similar conclusions can be derived in dimension D.
I Clearly validated experimentally, e.g. LCs.
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Trees for Centers and Clusters: Analysis

What about balancing?

I Consider now that we have different probabilities
p1 + p2 + . . .+ pk > 1.

I At level h we have∑
1≤i1,i2,...,ih≤k

F (F−1(pi1pi2 . . . pih) + r)

I Assuming again F (x) = x , this simplifies to

(p1 + p2 + . . .+ pk )h + rkh

I This is essentially the same as before, except that now the
depth of the tree is h∗ = logpmax

n.
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Trees for Centers and Clusters: Lessons

What about balancing?

I At levels logk n < h ≤ h∗, there are n clusters.
I Doing the summation, we obtain the same terms as before,

plus some extra terms in this area.
I This shows that it is good idea to have clusters of similar

size, that is, a balanced partition.
I Having such a partition is, e.g., a design goal of the M-tree,

now analytically justified.
I Note that, on trees for pivots, unbalancing was the answer

to high dimensions; here the answer is higher arity.
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Trees for Hyperplanes and Voronoi Regions: Structure

I They choose k centers c1 . . . ck , with their subtrees
T1 . . .Tk .

I Other elements are inserted into the subtree of their
closest center.

I The construction proceeds recursively inside each Ti .
I Queries q are compared to each ci , which is reported if

d(q, ci) ≤ r .
I Let ci be the closest to q.
I Then we enter each subtree j where

d(q, cj)− d(q, ci) ≤ 2r .
I VTs, GHTs, GNATs, SATs.
I Note regions do not overlap.
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Trees for Centers and Clusters: Structure
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Trees for Hyperplanes and Voronoi Regions: Analysis
I Let Di = d(q, ci).
I Let Gi = Di −min(D1, . . . ,Dk ).
I Let gi(x) be the histogram of Gi .
I Let Gi(x) be the cumulative histogram of gi(x).
I The probability gi of entering Ti is that of Gi ≤ 2r , that is,

gi = Gi(2r).
I The recurrence for the search cost is

T (n) = k +
∑

1≤i≤k

pi

T (pin) +
∑
j 6=i

gj T (pjn)


I This is

T (n) = k +
∑

(pi + gi(1− pi)) T (pin)

where pi is the probability of being closer to ci than to any
other center.
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Trees for Hyperplanes and Voronoi Regions: Analysis

I We assumed that the gis stay the same within the clusters.
I The solution to the recurrence is

T (n) =
(k + s − 1)nα − k

s − 1
, s = 1 +

∑
1≤i≤k

gi(1− pi),

where α is the solution of∑
1≤i≤k

(pi + gi(1− pi)) pαi = 1

I This has a unique solution, that improves for smaller gi ’s.
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Trees for Hyperplanes and Voronoi Regions: Lessons

Which is the best arity?

I Assume the partitions are similar in mass, pi = 1/k .
I Then α = logk s.
I Assume a relatively flat histogram, gi = pi + δ, so

s = 1 + k(p + δ)(1− p) = 2− 1/k + (k − 1)δ.
I The best α as a function of k has no closed form

expression.
I Numerically, one can see that the best k grows with δ (i.e.,

with the search difficulty).
I A subtler effect is that δ decreases as k increases (since

Gi(2r) decreases), but only up to some point since Gi ≥ Fi .
I Experimentally verified on GNATs vs GHTs, and in SATs.
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Trees for Hyperplanes and Voronoi Regions: Lessons

Balancing or unbalancing?

I These trees are not naturally unbalanced, but balancing is
difficult to ensure.

I Assume all pi = p = 1/k except for two, p + ε and p − ε,
associated with g, g+ and g−.

I Now the formula that defines α is

. . .+(p+ε)α((p+ε)(1−g+)+g+)+(p−ε)α((p−ε)(1−g−)+g−) = 1

I Since (p(1− g) + g) is a convex combination between p
and 1 with weight g, the sum is convex on ε.

I Thus increasing ε increases the sum and forces α to raise.
I Hence the best is to have balanced partitions.
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Conclusions

I Asymptotic analysis is, admittedly, hopeless for predicting
performance of metric space indexes.

I It has been mostly abandoned after a few initial attempts.
I I have argued, however, that it has a great potential to aid

in understanding performance, designing new indexes, and
guiding the direction of optimizations.

I I have shown how asymptotic analysis explains the known
general behavior of existing indexes.

I And also how it has helped us design extremely successful
indexes.
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What is missing?

I Most indexes have an O(nα)-type behavior.
I Analysis tells us what to expect if we move parameters

within an indexing scheme.
I We do not have clues to compare across indexes.
I This would be a great success for asymptotic analysis.
I Furthermore, we should combine it better with the

characteristics of the space.
I Probabilistic methods and nearest neighbor searches are

likely to be amenable of (probably cleaner!) asymptotic
analysis as well, and maybe it would help in their
understanding and design of improved methods.
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Thanks!
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