FIMSIM: Discovering Communities By Frequent
Item-Set Mining and Similarity Search

Jakub Peschel', Michal Batko!, Jakub Valcik?,
Jan Sedmidubsky!, and Pavel Zezula!

! Masaryk University, Brno, Czech Republic
{jpeschel, batko, sedmidubsky, pzezula}@mail.muni.cz
https://www.muni.cz
2 Konica Minolta Global R&D, Brno, Czech Republic
Jakub.Valcik@konicaminolta.cz
https://research.konicaminolta.com

Abstract. With the growth of structured graph data, the analysis of
networks is an important topic. Community mining is one of the main
analytical tasks of network analysis. Communities are dense clusters of
nodes, possibly containing additional information about a network. In
this paper, we present a community-detection approach, called FIMSIM,
which is based on principles of frequent item-set mining and similarity
search. The frequent item-set mining is used to extract cores of the com-
munities, and a proposed similarity function is applied to discover suit-
able surroundings of the cores. The proposed approach outperforms the
state-of-the-art DB-Link Clustering algorithm while enabling the easier
selection of parameters. In addition, possible modifications are proposed
to control the resulting communities better.

Keywords: community mining - frequent item-set mining - similarity
search - network analysis

1 Introduction

In recent years, the type of data has dramatically changed. The data is becoming
more and more context-dependent, and, therefore, it is necessary to analyze it
with respect to the context of a target application. An example of this kind
of data is structured network data, such as internet pages, social interactions,
protein-to-protein interactions, and many others. With the growing amount of
structured network data, there is also a rising need to analyze it efficiently. One
of the most important tasks in network data analysis is discovering communities,
also referred to as the community-mining or community-detection task.
Community mining is a process of uncovering hidden relationships among
the elements of network data. These relations lead to the creation of commu-
nity structures that represent densely packed clusters of network elements. The
discovery of such communities can help better understand graph dynamics and

https://www.muni.cz
https://research.konicaminolta.com

2 Jakub Peschel et al.

an organizational network structure and can be used as an improvement of rec-
ommendation systems, police investigation, business reorganization, and many
others.

To discover communities in network-based data, we consider a general data
representation in the form of a graph consisting of nodes that are interconnected
by edges. We further consider only undirected and unweighted graphs without
self-loops over the nodes. The nodes are not required to contain any additional
information, nor any additional network knowledge is taken into account for the
purpose of community mining. It is also worth noting that the analyzed graph
has to be sparse so that meaningful communities can be discovered. If the graph
starts to be too much dense, most of the nodes are becoming the candidates of
the community, which can easily degrade to the pathological case when all the
nodes belong to one community.

A community itself is generally understood as a group of nodes that are more
interconnected between themselves in comparison with external nodes. [ST5/[7]
However, there is no generally accepted definition of a community. For exam-
ple, Radicchi et al. proposes two categories of definitions: strong communities
and weak communities. [I5] The strong communities consist of nodes with a
majority of their respective neighbours as a part of the community, while the
weak ones simplify the condition that a total number of connections (edges)
between the community members must be higher than the number of edges
connecting community members with the others. Newman et al. consider the
community as some sort of hierarchy that can be gradually built from smaller
communities, and a given level of hierarchy with a suitable community granular-
ity can be selected. [11] This can be achieved by hierarchical clustering, where
strongly connected nodes are gradually grouped together to form a community,
and a dendrogram of such groupings then reflects the hierarchical representa-
tion. Nevertheless, the lack of a formal definition and the universality of abstract
definition often leads to the approaches that strictly prefer disjoint partitioning
of the graph instead of overlapping. To solve this issue, we consider the following
main assumptions:

— Communities are clusters of highly interconnected nodes;
— Communities have some level of hierarchical structure;
— Nodes can belong to multiple communities.

In this paper, we propose to combine the principles of frequent item-set min-
ing and similarity searching for the two-step discovery of overlapping commu-
nities. The proposed method offers a new perspective on solving the community
detection problem as well as outperforms a traditional method for the discovery
of overlapping communities.

2 Related Work

Community mining is an NP-complete problem due to the combinatorial nature
of graph subsets. [16] In this paper, we focus primarily on three main approaches

Title Suppressed Due to Excessive Length 3

for the discovery of overlapping communities: clique percolation, local expansion
and link clustering.

2.1 Clique Percolation

Clique percolation methods are based on discovering small clique-like structures
that are then based on their overlap merged together. For the purpose of better
clique searching, k-cliques are used. These are completely connected subgraphs
consisting of k nodes. Unlike maximal clique searching, k-clique searching for one
fixed k is a polynomial problem. After the discovery of a set of all k-cliques, their
overlap is checked. If two k-cliques share k-1 nodes, they are merged together
as a new community. If two communities share a contained k-clique, they are
connected together into one bigger community until no such merging is possible.

This approach was first proposed by Palla et al [I3] and led to the develop-
ment of CFinder [I]. Kumpula et al. then improved the clique percolation method
by defining sequential order for edges added into a graph to detect k-cliques [9].

The problem of the clique percolation approach is in its chaining of cliques.
There exist a possibility that nodes of resulting communities can have a high
distance (number of hops) between themselves.

2.2 Local Expansion

This approach uses randomly picked nodes as seeds for the community and
greedily expand the community to maximise a fitness function that evaluates
the quality of a resulting community.

An example of such an approach is LFM [10].

c
kin

ARG

(1)
The algorithm picks a random node as a seed and expands it to maximize func-
tion in Equation [If where K, ,c is external /internal degree of community ¢
and « is resolution parameter controlling the size of the community. After the
maximisation is finished, LFM picks a new random node from unassigned nodes
as a seed for the next community.

The random seed selection leads to situations where the overlapping commu-
nity is not detected because its nodes are already assigned to different commu-
nities. This approach also does not restrict the diameter of communities, which
mean that nodes inside communities may be distanced.

2.3 Link Clustering

Another approach to community mining is to detect overlapping communities by
clustering links. The idea is, that node can belong to multiple communities, but
the link between nodes defines the relationship between these two objects. [3]
By grouping similar edges into clusters, respective nodes can be assigned into

4 Jakub Peschel et al.

communities defined by these clustered edges. There exist several link clustering
methods such as OCMiner [5] and DB Link Clustering [18].
The latter mentioned uses six steps to identify communities:

1. An index of the edges is generated from the graph.

2. An incidence matrix between edges and nodes is created from the adjacency
matrix.

3. A similarity matrix between each pair of edges is computed. Modified Jaccard
coefficient is used as a distance function.

4. For each yet unassigned edge in the graph, if this edge is a core edge, a new
cluster is created, and neighbouring edges connected to the core edges are
assigned to this cluster. Edge is core edge if the cardinality of the set of
similar edges in the neighbourhood of studied edge is higher than core size
parameter.

5. Unassigned edges that are not part of the core are checked, whether they can
be assigned to some existing cluster of edges to get final link partitioning.

6. Final link partitioning is transformed into the node communities by collect-
ing incident nodes.

From the selected approaches, the link clustering results in community struc-
tures that are the most coherent. The diameter is controlled by the usage of core
links that need to be adjacent to each other and, as such, does not tend to
grow too much. Because of this, the link clustering approach leads to the most
structurally cohesive community structure.

3 Community Mining Process

We propose a two-step approach to discover cohesive communities within a rea-
sonably sparse graph. First, we detect possible community candidates, so-called
cores, which are densely interconnected sets of nodes. To find such cores, we
take inspiration in the problem of frequent item-set mining, for which many
different algorithms can be used. Second, we possibly enrich each discovered
candidate community with its surrounding — a set of nodes that do not need to
be mutually interconnected but are densely connected to the core. To find such
surroundings, we define a core-to-surrounding distance function and search for
suitable surrounding candidates by evaluating range queries, for which many dif-
ferent similarity-search algorithms exist. The enriched communities are finally
refined to retain only communities with reasonable size and inter-community
overlaps.

3.1 Preliminaries

We consider structured network data as a graph G consisting of a pair of sets
(V,E), where V is a set of nodes and E is a set of undirected and unweighted
edges. We define a community as a structure consisting of two types of nodes:
core and surrounding nodes.

Title Suppressed Due to Excessive Length 5

The core is a group of heavily interconnected nodes of sufficient size. The
ideal core of the community is a fully connected subgraph, otherwise known
as clique. Such core ensures that in the resulting community, the diameter is
maximally three hops: one from a starting node to core, one across the core,
and the last one from the core to an end node. Although the clique is ideal
core, this requirement is too strict; thus, the selection of the right relaxation can
dramatically improve the detection of communities over the whole graph.

Although cores of the communities are cohesive groups, the extension of such
structure can result in better grouping. This can be caused by imperfections in
the process of capturing relations between network nodes. As an example, two
members of the community do not use the same communication platform as with
the rest of the community. This is the reason why each core is extended by its
surrounding. The surrounding is defined as a set of nodes that have “sufficient”
interconnection into the core of the community but do not meet the criteria to
become a core.

3.2 FIMSIM: Community Mining Algorithm

For the purpose of processing, a graph is assumed in the form of a list of neigh-
bours. The first step is the detection of cores. To detect the suitable core of the
community, we use the task of mining frequent item sets, which was originally
introduced by Agrawal et al. [2]. This task is often referred to as a market basket
analysis and served as a way to detect items commonly bought together. The
frequent item-set mining searches a database containing sets of unique items for
subsets. Any subset occurring in the database more frequently than minimal
threshold 0 is returned as a frequent set.

In the list of neighbours representation, each node can be viewed as a market
basket and a set of neighbours as the bought items. We further extend the list of
neighbours of a node by adding the node itself. Frequent sets F'S obtained from
this extended representation are a superset of the cliques and densely connected
clusters provided with reasonable parameters. By selecting the parameter 6, we
will obtain all the cliques of size # and higher.

To prove this assumption, let C' be set of nodes of the clique of size k and F¢
set of nodes from graph, such as each set of neighbours of selected node Vfc € F¢
contains all nodes of clique C' C fo. Then every node of clique C' contributes to
a frequency of C by one, and thus frequency must be at least |C| = k. If k > 0,
the clique will be part of frequent sets F'S. There is one specific pathological case
(as illustrated in Fig. |1)), where a set of nodes is referenced by third party nodes
frequently enough to appear as heavily connected. This case is finally eliminated
in the refinement step.

After frequent sets are obtained, it is necessary to eliminate undesirable ones.
Sets are filtered based on two parameters; their common occurrence must be
higher than their size to eliminate part of cores referenced from third party
nodes, and their size must be at least 6. This second condition removes small
cores that are often the result of the bottom-up approach of frequent item-set
mining.

6 Jakub Peschel et al.

a b
¥

Fig. 1. Pathological case resulting in frequent sets {a, b, ¢} and {d, e, f} without an
existing connection between nodes.

After obtaining the cores of the communities, a similarity range query is ap-
plied with the core as a query. For each node, there is then sequentially measured
similarity to each core, and if the node is sufficiently similar, the node is marked
with the respective core. There is a possibility to replace the range query with a
K-NN query, which will allow better control over the resulting size of the com-
munity. The similarity is measured against the set of nodes of the core for each
node in the neighbourhood of the core.

There is a number of standard distance functions for sets like the Jaccard
coefficient that can be found in [I7]. However, for comparison of node’s neighbour
list A with core B, we need a distance function that would result in zero in these
two special cases:

1. A C B — All neighbours of the node A are members of core B;
2. B C A — Neighbour list of node A contains whole core B.

For this purpose, we propose to use the following distance function:

|[ANB| |AN B|
1 max(A 1B . (2)

One parameter of the range query is distance radius r. The radius has a major
impact on the density of the resulting communities. When distance is smaller,
more edges are connected to the core of the communities. Standard measures
often prefer this density, so values between 0 and 0.2 are preferred.

As a result of the range query, all nodes are marked with respective cores. By
aggregating them into groups, raw communities are obtained. It is possible that
the result contains duplicates and products of the pathological cases of a core.
These can be eliminated by checking if the core is part of the community. Nodes
from the pathological case have very low to zero common neighbours present in
the core set and thus are not selected into the community by range query. After
filtration, duplicates are removed.

After obtaining the communities, the results can be used as the new cores
and search of the surrounding can be started again. This leads to communities
with a potentially bigger distance between nodes and thus it is necessary that
such approach is used only for suitable use cases. The pseudocode of the whole
algorithm is depicted in Fig. 2]

2

Title Suppressed Due to Excessive Length 7

def FIMSIM(G, 0, r):
unfiltered_cores = FIM(G, 0); # frequent item-set mining
cores = {};
foreach (core in unfiltered_cores):
if (core.frequency >= core.size and core.size >= 0):
cores += core;
assignments = {};
foreach (core in cores):
assignments += simsearch(G, core, r);
aggregations = aggregate(assignments)
duplicit_communities = {};
foreach (candidate in aggregations):
foreach (core in cores):
if (candidate contains core):
duplicit_communities += candidate;
communities = deduplications(duplicit_communities)
return communities;

Fig. 2. Pseudocode of the proposed FIMSIM algorithm for discovering communities.

4 Experiments

In the experimental part, we compared the proposed approach with the DB-Link
Clustering. Both of these approaches share similar parameter space and results
in similar graph structures, as can be seen in Fig.

The prototype implementation of FIMSIM is developed with the analytical
framework ADAMISS [I4], and for evaluation of similarity, MESSIF framework
[4] is used. The former framework allows for a potential optimization based on
the density of the analyzed graph.

4.1 Dataset

To evaluate whether this approach is eligible for community mining, we created
a collaboration network from a pseudonymised dataset consisting of logged inter-
actions of users with documents on a shared drive provided by Konica Minolta.
Typically each document is created, modified and read by various users; thus,
the dataset captures active collaboration of users on the document’s content and
passive interactions of users who only accessed the document.

The input data are in form of tuples: date user_id, action_type, document_id,
document_type. The action_type consisted of six kategories: Download, Previewed,
Edit, Uploaded, Created and Item Shared.

We created the user-user interaction network from this data, where two users
are connected when they cooperated on the creation process of at least one
document. Thus if there is an access log with action_type Created, Uploaded or
Edit for both users with same document_id. The resulting network consists of
128 users with an average degree of 8.531.

8 Jakub Peschel et al.

Fig. 3. Example of discovered communities: FIMSIM (Left) and DB-Link Cluster-
ing (Right). The example contains two biggest communities obtained from the best
runs of both the algorithms. In particular, DB-Link Clustering uses § = 6 and r = 0.4,
while FIMSIM uses # = 12 and r = 0.1.

This data represents a collaboration of workers in the organisation and, as
such, can be analysed by managers. The discovered communities may function
as decision support for managers to create and validate the matrix structure of
the organisation.

4.2 Evaluation Criteria

The traditional way of evaluating the quality of graph partitioning is by modu-
larity. [12]

1 kik;
ceCijeVv
Modularity measures the number of edges that connects nodes in the same
partitioning reduced by the expected amount of edges in a randomly wired net-
work. This metric is primarily used for the evaluation of exclusive partitioning
and thus penalizes overlapping communities.

Title Suppressed Due to Excessive Length 9

Because of limitations of the modularity, an extension proposed by Chen et
al. was used. [0]

1 o - kikj
@i X oo (4 7). a

ceCi,jeVv
kci
ZCZEC kc2i

In this version of modularity, the Kronecker delta is replaced with a coefficient
of how many communities the node is involved in. This allows for a decrease in
the importance of the node involved in multiple communities and thus is not that
penalising for higher density on the overlap. Even though this approach tries to
solve the problem of overlaps, it still evaluates non-overlapping communities as
having much higher quality than overlapping ones.

()

Qe =

4.3 Evaluation

Although algorithms share parameter space, parameters do not match one to
one. Because of that, it is important to watch best-achieved results over the
whole searched space. The experiment showed that FIMSIM outperforms the
quality of found communities in both metrics. The result of the comparison can
be seen in Fig. [and Fig.

= Modularity - FIMSIM = Overlapping Modularity - FIMSIM
Modularity - DB Link Clustering = Overlapping Modularity - DB Link Clustering

0.2
0.15
0.1

0.05 ——

0_ \

10 15 20 25
Minimal Core Size

Modularity/Overlapping Modularity

Fig. 4. Quality comparison

10 Jakub Peschel et al.

= FIMSIM = DB Link Clustering

1000000

100000

10000

Time (ms)

1000
100

10
10 15 20 25 30

Minimal Core Size

Fig. 5. Time comparison

The experiment also showed that our approach can be better used without
knowledge of the correct parameters than DB Link clustering. Because of the
nature of frequent item-set mining, when the size of the core is too huge, the
algorithm stops almost immediately. Because of that, it can be beneficial to start
from higher numbers and lower the core size parameter until a suitable amount
of cores is found.

The disadvantage of our approach is that once the core size parameter is too
small, the discovery of cores is computationally challenging. Our experiments
showed that higher quality of communities is achieved at the higher value of the
core size parameter.

5 Conclusion

In this paper, we proposed a different approach to community mining based on a
combination of frequent item-set mining and similarity searching. The proposed
method uses a two-step process of finding core community candidates and as-
signing surroundings to them. We proposed a distance function for the selection
of suitable surroundings based on two extreme cases.

In cooperation with Konica Minolta, a collaboration network was created
as a representation of real-world data, and a new approach was tested. With
the usage of modularity and overlapping modularity, we showed that the pro-
posed approach achieves higher-quality results than the state-of-the-art DB-Link
Clustering approach that discovers a similar type of communities.

Title Suppressed Due to Excessive Length 11

In several steps, we discussed the possibility of modifying the approach to
achieve better flexibility in terms of the size of the community as well as the
quality of the surrounding of the cores. We also discussed an iterative approach,
where after obtaining communities, these are taken as the new cores and with
the new range, surrounding for them can be chosen.

Due to the modular nature of the approach, there is a possibility to further
improve the proposed approach in terms of optimizing the selection of appropri-
ate frequent item-set algorithms, as well as employing some sort of indexing for
assignment of the surroundings to the cores.

Acknowledgment

This research has been supported by the Czech Science Foundation project No.
GA19-02033S.

References

1. Adamcsek, B., Palla, G., Farkas, 1.J., Derényi, 1., Vicsek, T.: Cfinder: locating
cliques and overlapping modules in biological networks. Bioinformatics 22(8),
1021-1023 (2006)

2. Agrawal, R., Srikant, R., et al.: Fast algorithms for mining association rules. In:
Proc. 20th int. conf. very large data bases, VLDB. vol. 1215, pp. 487-499 (1994)

3. Ahn, Y.Y., Bagrow, J.P., Lehmann, S.: Link communities reveal multiscale com-
plexity in networks. Nature 466(7307), 761-764 (2010)

4. Batko, M., Novak, D., Zezula, P.:. MESSIF: Metric similarity search implementation
framework. In: International DELOS Conference. pp. 1-10. Springer (2007)

5. Bhat, S.Y., Abulais, M.: Ocminer: A density-based overlapping community detec-
tion method for social networks. Intelligent Data Analysis 19(4), 917-947 (2015)

6. Chen, D., Shang, M., Lv, Z., Fu, Y.: Detecting overlapping communities of weighted
networks via a local algorithm. Physica A: Statistical Mechanics and its Applica-
tions 389(19), 4177-4187 (2010)

7. Fortunato, S.: Community detection in graphs. Physics reports 486(3-5), 75-174
(2010)

8. Girvan, M., Newman, M.E.: Community structure in social and biological networks.
Proceedings of the national academy of sciences 99(12), 7821-7826 (2002)

9. Kumpula, J.M., Kiveld, M., Kaski, K., Saraméki, J.: Sequential algorithm for fast
clique percolation. Physical review E 78(2), 026109 (2008)

10. Lancichinetti, A., Fortunato, S., Kertész, J.: Detecting the overlapping and hier-
archical community structure in complex networks. New journal of physics 11(3),
033015 (2009)

11. Newman, M.E.: Communities, modules and large-scale structure in networks. Na-
ture physics 8(1), 25-31 (2012)

12. Newman, M.E., Girvan, M.: Finding and evaluating community structure in net-
works. Physical review E 69(2), 026113 (2004)

13. Palla, G., Derényi, 1., Farkas, 1., Vicsek, T.: Uncovering the overlapping community
structure of complex networks in nature and society. Nature 435(7043), 814-818
(2005)

12

14.

15.

16.

17.

18.

Jakub Peschel et al.

Peschel, J., Batko, M., Zezula, P.: Techniques for complex analysis of contemporary
data. In: Proceedings of the 2020 International Conference on Pattern Recognition
and Intelligent Systems. pp. 1-5 (2020)

Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and iden-
tifying communities in networks. Proceedings of the national academy of sciences
101(9), 26582663 (2004)

Schaeffer, S.E.: Graph clustering. Computer science review 1(1), 27-64 (2007)
Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity search: the metric space
approach, vol. 32. Springer Science & Business Media (2006)

Zhou, X., Liu, Y., Wang, J., Li, C.: A density based link clustering algorithm for
overlapping community detection in networks. Physica A: Statistical Mechanics
and its Applications 486, 65-78 (2017)

	FIMSIM: Discovering Communities By Frequent Item-Set Mining and Similarity Search

