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Abstract. An evergrowing amount of readily available data and the
increasing rate at which it can be acquired leads to fast developments in
many fields of intelligent information processing. Often the underlying
data is complex, making it difficult to represent it by vectorial data
structures. This is where graphs offer a versatile alternative for formal
representations. Actually, quite an amount of graph-based methods for
pattern recognition and related fields have been proposed. A considerable
part of these methods rely on graph matching. In our recent work we
propose a novel encoding of specific graph matching information. The
idea of this encoding is to formalize the stable cores of specific classes
by means of graphs (called matching-graphs). In the present paper we
propose to use these matching-graphs to create a vectorial representation
of a given graph. The basic idea is to produce hundreds of matching-
graphs first, and then represent each graph g as a binary vector that
shows the occurrence of each matching-graph in g. In an experimental
evaluation on three data sets we show that this graph embedding is
able to improve the classification accuracy of two reference systems with
statistical significance.
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1 Introduction and Related Work

Pattern recognition is a major field of research which aims at solving various
problems like the recognition of facial expressions [1], the temporal sorting of
images [2], or enhancing weakly lighted images [3], to name just a few exam-
ples. The field of pattern recognition can be divided in two main approaches.
Statistical approaches, which rely on feature vectors for data representation and
structural approaches, which use strings, trees, or graphs for the same task. Since
graphs are able to encode more information than merely an ordered list of num-
bers, they offer a compelling alternative to vectorial approaches. Hence, they
are widely used and adopted in various pattern recognition tasks that range
from predicting the demand of medical services [4], over skeleton based action
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recognition [5], to the automatic recognition of handwriting [6]. The main draw-
back of graphs is, however, the computational complexity of basic operations,
which in turn makes graph based algorithms often slower than their statistical
counterparts.

A large amount of graph based methods for pattern recognition have been
proposed from which many rely on graph matching [7]. Graph matching is typi-
cally used for quantifying graph proximity. Graph edit distance [8,9], introduced
about 40 years ago, is recognized as one of the most flexible graph distance
models available. In contrast with many other distance measures (e.g. graph
kernels [10] or graph neural networks [11]), graph edit distance generally offers
more information than merely a dissimilarity score, viz. the information which
subparts of the underlying graphs actually match with each other (known as edit
path).

In a recent paper [12], the authors of the present paper propose to explicitly
exploit the matching information of graph edit distance. This is done by encoding
the matching information derived from graph edit distance into a data structure,
called matching-graph. The main contribution of the present paper is to propose
and research another employment of these matching-graphs. In particular, we use
these matching-graphs to embed graphs into a vector space by means of subgraph
isomorphism. That is, each graph g is represented by a vector of length of the
number of matching-graphs available, where each entry in the vector equals 1 if
the matching-graph occurs in g and 0 otherwise.

The proposed process of creating vector space embedded representations
based on found substructures is similar in spirit to approaches like frequent
substructure based approaches [14], subgraph matching kernels [15] or graphlet
approaches [16]. The common idea is to first generate a set of subgraphs and
treat them as features. In [14] a graph g is represented by a vector that counts
the number of times a certain subgraph occurs in g. The subgraphs that are
used for embedding are derived via FSG algorithm [14]. Related to this in [15] a
Subgraph Matching Kernel (SMKernel) is proposed. This kernel is derived from
the common subgraph isomorphism kernel and counts the number of matchings
between subgraphs of fixed sizes in two graphs. Another related approach uses
graphlets for embedding [16]. Graphlets are small induced subgraphs of fixed size
that contain a given set of nodes including all edges.

The major principle of our approach is similar to that of [14–16]. However,
the main difference of the above mentioned approaches to our proposal lies in the
creation of the subgraphs. We employ graph edit distance to create matching-
graphs as basic substructures. These matching-graphs offer a natural way of
defining significant and large sets of subgraphs that can be readily used for
embedding.

The remainder of this paper is organized as follows. Section 2 makes the paper
self-contained by providing basic definitions and terms used throughout this
paper. Next, in Section 3 the general procedure for creating a matching-graph
is explained together with a detailed description of the vector space embedding
for graphs. Eventually, in Section 4, we empirically confirm that our approach
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is able to improve the classification accuracy of two reference systems. Finally,
in Section 5, we conclude the paper and discuss some ideas for future work.

2 Graphs and Graph Edit Distance – Basic Definitions

2.1 Graph and Subgraph

Let LV and LE be finite or infinite label sets for nodes and edges, respectively.
A graph g is a four-tuple g = (V,E, µ, ν), where

– V is the finite set of nodes,
– E ⊆ V × V is the set of edges,
– µ : V → LV is the node labeling function, and
– ν : E → LE is the edge labeling function.

A part of a graph, called a subgraph, is defined as follows. Let g1 = (V1, E1, µ1, ν1)
and g2 = (V2, E2, µ2, ν2) be graphs. Graph g1 is a subgraph of g2, denoted by
g1 ⊆ g2, if

– V1 ⊆ V2,
– E1 ⊆ E2,
– µ1(u) = µ2(u) for all u ∈ V1, and
– ν1(e) = ν2(e) for all e ∈ E1.

Obviously, a subgraph g1 is obtained from a graph g2 by removing some
nodes and their incident edges, as well as possibly some additional edges from
g2.

Two graphs g1 and g2 are considered isomorphic if there is a matching part for
each node and edge of g1 in g2 (and vice versa). In this regard it is also required
that the labels on the nodes and edges exactly correspond (if applicable).

In close relation to graph isomorphism is subgraph isomorphism. Intuitively
speaking a subgraph isomorphism states whether a graph is contained in another
graph. More formally a graph g1 is subgraph isomorphic to a graph g2 if there
exists a subgraph g ⊆ g2 that is isomorphic to g1. The concept of subgraph
isomorphism is one of the building blocks used in our embedding framework (see
Section 3).

2.2 Graph Matching

When graphs are used to formally represent objects or patterns, a measure of
distance or similarity is usually required. Over the years several dissimilarity
measures for graphs have been proposed. Some of the most prominent ones
would be graph kernels [17], spectral methods [18], or graph neural networks [19].

A kernel is a function that implicitly maps data to a feature space, by rep-
resenting it in the form of pairwise comparisons [20]. Intuitively, graph kernels
measure the similarity between pairs of graphs and thus provide an embedding
in a – typically unknown – feature space. Graphs can also be represented in the
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form of their laplacian matrix. The eigenvalues and eigenvectors of these ma-
trices are known to contain information about the branching and clustering of
the nodes and can be used for the definition of various similarity measures [18].
Another emerging graph matching method makes use of deep neural networks.
Some approaches use neural networks to map the graphs into an Euclidean
space [11], while other approaches directly take pairs of graphs as input and
output a similarity score [19].

A further prominent graph matching method, which is actually employed in
the present paper, is graph edit distance [8, 9]. One of the main advantages of
graph edit distance is its high degree of flexibility, which makes it applicable to
virtually any kind of graphs.

Given two graphs g1 and g2, the general idea of graph edit distance is to
transform g1 into g2 using some edit operations. A standard set of edit operations
is given by insertions, deletions, and substitutions of both nodes and edges.
Sometimes, in other applications additional operations like merging and splitting
are used. We denote the substitution of two nodes u ∈ V1 and v ∈ V2 by (u→ v),
the deletion of node u ∈ V1 by (u → ε), and the insertion of node v ∈ V2 by
(ε → v), where ε refers to the empty node. For edge edit operations we use a
similar notation.

A set {e1, . . . , et} of t edit operations ei that transform a source graph g1

completely into a target graph g2 is called an edit path λ(g1, g2) between g1

and g2. Let Υ (g1, g2) denote the set of all edit paths transforming g1 into g2

while c denotes the cost function measuring the strength c(ei) of edit operation
ei. The graph edit distance between g1 = (V1, E1, µ1, ν1) and g2 = (V2, E2, µ2, ν2)
can now be defined as follows.

dλmin(g1, g2) = min
λ∈Υ (g1,g2)

∑
ei∈λ

c(ei) , (1)

Optimal algorithms for computing the edit distance are computationally de-
manding, as they rely on combinatorial search procedures. In order to counteract
this problem we use the often used approximation algorithm BP [21]. The ap-
proximated graph edit distance between g1 and g2 computed by algorithm BP
is termed dBP(g1, g2) from now on.

3 Graph Embedding by Means of Matching-Graphs

The general idea of the proposed approach is to embed a given graph into a
vector space by means of matching-graphs. These matching-graphs are built
by extracting information on the matching of pairs of graphs and by formal-
izing and encoding this information in a data structure. Matching-graphs can
be interpreted as denoised core structures of their respective class. The idea of
matching-graphs emerged in [12] where this data structure is employed for the
first time for improving the overall quality of graph edit distance. In the next
subsection we first formalize the graph embedding, and in Subsection 3.2 we
then describe in detail the creation of the matching-graphs.
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3.1 Graph Embedding using Matching-Graphs

Let g be an arbitrary graph stemming from a given set of graphs. Using a set
M = {m1, . . . ,mN} of matching-graphs, we embed g as follows

ϕ(g) = (sub(m1, g), . . . , sub(mN , g)),

where

sub(mi, g) =

{
1 if mi ⊆ g
0 else

That is, for our embedding we employ subgraph isomorphism that provides
us with a binary similarity measure which is 1 or 0 for subgraph-isomorphic
and non-subgraph-isomorphic graphs, respectively. There are various algorithms
available that can be applied to the subgraph isomorphism problem. Namely
various tree search based algorithms [22,23], as well as decision tree based tech-
niques [24]. In the present paper we employ the VF2 algorithm which makes use
of efficient heuristics to speed up the search [23].

Obviously, our graph embedding produces binary vectors with a dimension
that is equal to the number of matching-graphs actually available. This specific
graph embedding is similar in spirit to the frequent substructure approaches [14],
the subgraph matching kernel [15], or graphlet kernel [16] reviewed in the in-
troduction of the present paper. However, the special aspect and novelty of our
approach is the employment of matching-graphs for embedding.

3.2 Creating Matching-Graphs

In order to produce the N matching-graphs for embedding, we pursue the fol-
lowing procedure. We consider a pair of graphs gi, gj for which the graph edit
distance is computed. Resulting from this a (suboptimal) edit path λ(gi, gj)
can be obtained. For each edit path λ(gi, gj), two matching-graphs mgi×gj and
mgj×gi are now built (one for the source graph gi and one for the target graph
gj). These matching-graphs contain all nodes of gi and gj that are substituted
according to edit path λ(gi, gj). All nodes that are deleted in gi or inserted in
gj are not considered in either of the two matching-graphs.

We observe isolated nodes in some experiments. Graph edit distance can
handle isolated nodes. However we still decide to remove isolated nodes from
our matching-graphs because we aim at building as small as possible cores of
the graphs that are actually connected. Note that we also remove incident edges
of nodes that are not included in the resulting matching-graphs.

An edge u1, u2 ∈ Ei that connects two substituted nodes u1 → v1 and
u2 → v2, is added to the matching-graph mgi×gj , if, and only if, there is an edge
(v1, v2) ∈ Ej available.

Using the described procedure for creating a matching-graph out of two input
graphs, we now employ a simplified version of an iterative algorithm [13] that
builds a set of matching-graphs. The algorithm takes as input k sets of graphs
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Gω1
, . . . , Gωk

with graphs from k different classes ω1, . . . , ωk as well as the num-
ber of matching-graphs kept from one iteration to another (see Algorithm 1).

Algorithm 1: Algorithm for iterative matching-graph creation.
input : sets of graphs from k different classes G = {Gω1

, . . . , Gωk
}, the maximum

number n of matching-graphs to keep in each iteration
output: sets of matching-graphs for each of the k different classes M = {Mω1 , . . . ,Mωk

}

1 Initialize M as the empty set: M = {}
2 foreach set of graphs G ∈ G do
3 Initialize M as the empty set: M = {}
4 foreach pair of graphs gi, gj ∈ G×G with j > i do
5 M = M ∪ {mgj×gi

,mgi×gj
}

6 end
7 do
8 M ′ = a subset of n random elements of M

9 foreach pair of graphs mi,mj ∈M ′ ×M ′ with j > i do
10 M = M ∪ {mmj×mi

,mmi×mj
}

11 end

12 while M has changed in the last iteration
13 M =M∪M
14 end

The algorithm iterates over all k sets (classes) of graphs from G (main loop of
Algorithm 1 from line 2 to line 14). For each set of graphs G and for all possible
pairs of graphs gi, gj stemming from the current set G, the initial set of matching-
graphs M is produced first (line 3 to 6). Eventually, we aim at iteratively building
matching-graphs out of pairs of existing matching-graphs. The motivation for
this procedure is to further reduce the size of the matching-graphs and to find
small core-structures that are often available in the corresponding graphs. Due
to computational limitations, we have to randomly select a subset of size n from
the current matching-graphs in M (line 8)3. Based on this selection, the next
generation of matching-graphs is built. This process is continued until no more
changes occur in set M . Finally, set M – actually used for graph embedding
– is compiled as the union of all matching-graphs individually produced for all
available classes.

The dimension of the created vectors directly depends on the number of
matching-graphs. Hence, our method might result in feature vectors that are
initially very large. In order to reduce potential redundancies and select in-
formative matching-graphs, we apply a recursive feature elimination based on
feature weights of random forests on our graph embeddings [26].

3 Qualitative results of our research show, that the finally created matching-graphs
do not differ substantially regardless the initial random set of graphs. Hence, the
process of creating matching-graphs is not executed in multiple iterations.
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4 Experimental Evaluation

4.1 Experimental Setup

From an experimental point of view we aim at answering the following question.
Can the created feature vectors (based on our novel matching-graphs) be used
to improve the classification accuracy of existing procedures where the graph
matching distances are directly used as a basis for classification? In order to
answer this question, we compare our embedding with two reference systems in
a classification experiment.

The first reference system is a k-nearest-neighbor classifier (k-NN) that di-
rectly operates on dBP (denoted as k-NN(dBP)). The second reference system is
a Support Vector Machine (denoted as SVM(−dBP)) that exclusively operates
on a similarity kernel κ(gi, gj) = −dBP(gi, gj) [27]. For classifying the embedded
graphs, we also employ an SVM that operates on the embedding vectors (using
standard kernel functions for feature vectors). We denote our novel approach as
SVMvec.

We chose the above mentioned classifiers as a baseline, because our goal is to
leverage the power of graph edit distance to build a novel graph representation.
That is, we decide to compare our novel method with these classifiers that are
often used in conjunction with graph edit distance.

The proposed approach is evaluated on three different data sets represent-
ing molecules. The first two sets stem from the IAM graph repositoy [28]4

(AIDS and Mutagenicity) and the third originates from the National Cancer
Institute [29]5(NCI1).

Each data set consists of two classes. The AIDS data set consists of two classes
that represent molecules with activity against HIV or not. Mutagenicity consists
of molecules with or without the mutagen property, whereas the NCI1 data set
consists of chemical compounds that contain activity against non-small cell lung
cancer or not. For all data sets the nodes contain a discrete label (symbol of the
atom) whereas the edges have no labels.

For the experimental evaluation each data set is split in to three predefined
random disjoint sets for training, validation, and testing. Details about the size
of the individual splits can be found in Table 1.

4.2 Validation of Metaparameters

For the BP algorithm that approximates the graph edit distance the following
parameters are commonly optimized. The costs for node and edge deletions,
as well as a weighting parameter α ∈ [0, 1] that is used to trade-off the relative
importance of node and edge costs. However, for the sake of simplicity we employ
unit cost of 1.0 for both deletions and insertions of both nodes and edges and
optimize the weighting parameter α only.

4 www.iam.unibe.ch/fki/databases/iam-graph-database
5 https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets
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Table 1. We show the total number of graphs for each data set as well as the corre-
sponding number of graphs in the training, validation, and test sets.

Data set Total Training Validation Test

AIDS 2,000 250 250 1,500

Mutagenicity 4,337 1,500 500 2,337

NCI1 4,110 2,465 822 823

For the creation of the matching-graphs – actually also dependant on graph
edit distance – the same cost parameters are employed. For the iterative matching-
graph creation process (Algorithm 1) we set the number of matching-graphs
considered for the next iteration to n = 200 for all data sets. The stop criterion
of the iterative process checks whether or not the last iteration resulted in a
change of the underlying set M . Hence, the final number of matching-graphs to
be employed for graph embedding is self-controlled by the algorithm.

As discussed in Section 3.1 the dimension of the created vectors initially refers
to the number of matching-graphs. As our method might generate thousands of
matching-graphs, the dimension of the resulting vectors can be very large. Hence,
we apply the feature selection process as discussed in Section 3.2.

In Figure 1 we can see the cross validation accuracy as a function of the
number of features after each step of the recursive feature elimination process.
It is clearly visible that if the dimension of the vectors becomes too small, the
validation accuracy drops by a large margin. However, before this significant
drop the accuracy remains relatively stable. In Table 2 we compare the number
of selected features and the total amount of available features for all data sets.
On AIDS and Mutagenicity about 4% of the originally available features are
selected, while on NC1 about 13% of the features are finally used.

Table 2. The amount of features created for each data set and the final amount used
after feature selection.

AIDS Mutagenicity NCI1

Total Features 4,955 86,752 4,544

Selected Features 199 4,139 618

For the optimization of the SVM that operates on our embedded graphs
we evaluate three different standard kernels for feature vectors, viz. the Radial
Basis Function (RBF), Linear kernel, and a Sigmoid kernel [30]. For all functions
we optimize parameter C, which is the trade off between margin maximization
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and error minimization. In case of RBF and Sigmoid kernel also parameter γ
is optimized (all optimizations are conducted by means of an exhaustive grid
search).

(a) AIDS (b) Mutagenicity

(c) NCI1

Fig. 1. Cross validation accuracy as a function of the number of features during the
recursive feature elimination process. The global optimum is indicated with a small
circle.

4.3 Test Results and Discussion

In Table 3 we show the classification accuracies of both reference systems, viz.
k-NN(dBP) and SVM(−dBP), as well as the results of our novel approach SVMvec

on all data sets.
We observe that our approach achieves better classification results compared

to both baseline classifiers on all data sets. On the Mutagenicity data set our
approach outperforms both reference systems with statistical significance. On
AIDS and NCI1 we achieve a statistically significant improvement compared with
the first and second reference system, respectively. The statistical significance is
based on a Z-test using a significance level of α = 0.05.
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A more detailed analysis of the validation and test results on the Mutagenic-
ity data set brings to light the following interesting result (see Table 4). While
for both reference systems the validation and test accuracies are more or less
stable, we observe a massive overfitting of our novel approach. That is, the clas-
sification accuracy drops from 88.2% on the validation set to 76.3% on the test
set. Note that this effect is visible on this specific data set only and needs further
investigations in future work.

Table 3. Classification accuracies of two reference systems (a k-NN classifier that op-
erates on the original edit distances (k-NN(dBP)) and an SVM that uses the same
edit distances as kernel values (SVM(−dBP))) and our proposed system (an SVM us-
ing the embedded graphs (SVMvec)). Symbol ◦/◦ indicates a statistically significant
improvement over the first and second system, respectively. We are using a Z-test at
significance level α = 0.05.

Reference Systems Ours

Data Set k-NN(dBP) SVM(−dBP) SVMvec

AIDS 98.6 99.4 99.6 ◦/-

Mutagenicity 72.4 69.1 76.3 ◦/◦

NCI1 74.4 68.6 76.7 -/◦

Table 4. The difference of validation and test accuracies using the different classifiers
on the Mutagenicity data set. The effect of overfitting of our novel system is clearly
observable.

Reference Systems Ours

k-NN(dBP) SVM(−dBP) SVMvec

Data Set va te va te va te

Mutagenicity 74.8 72.4 69.8 69.1 88.2 76.3

5 Conclusions and Future Work

In the present paper we propose to use matching-graphs – small, pre-computed
core structures extracted from a training set – to build vector representations
of graphs. The matching-graphs are based on the edit path between pairs of
graphs. In particular, the resulting matching-graphs contain only nodes that are
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actually substituted via graph edit distance. First, we build a relatively large set
of N small matching-graphs by means of an iterative procedure. Eventually, we
embed our graphs in an N -dimensional vector space such that the i-th dimension
corresponds to the i-th matching-graph. More formally, each entry of the result-
ing vector represents whether or not the corresponding matching-graph occurs
as a subgraph in the graph to be embedded. Finally, we reduce the dimension
of the created vectors by means of a standard feature selection. Hence we follow
the paradigm of overproducing and selecting features.

By means of an experimental evaluation on three graph data sets, we empiri-
cally confirm that our novel approach is able to statistically significantly improve
the classification accuracy when compared to classifiers that directly operate on
the graphs.

For future work we see several rewarding paths to be pursued. First, we aim
at evaluating the procedure on additional data sets and in this regard apply it
also on data sets with continuous labels. Furthermore it could be interesting to
employ the vectorized representation in conjunction with other classifiers and
compare our approach with other subgraph or graphlet based kernels.
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