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Abstract. The inference of minimum spanning arborescences within
a set of objects is a general problem which translates into numerous
application-specific unsupervised learning tasks. We introduce a unified
and generic structure called edit arborescence that relies on edit paths
between data in a collection, as well as the Minimum Edit Arborescence
Problem, which asks for an edit arborescence that minimizes the sum of
costs of its inner edit paths. Through the use of suitable cost functions,
this generic framework allows to model a variety of problems. In particular,
we show that by introducing encoding size preserving edit costs, it can be
used as an efficient method for compressing collections of labeled graphs.
Experiments on various graph datasets, with comparisons to standard
compression tools, show the potential of our method.

Keywords: Edit arborescence · Edit distance · Lossless compression.

1 Introduction

The discovery of some underlying structure within a collection of data is the main
goal of unsupervised learning. Among the different kinds of graph structures
available for structure inference, arborescences play an essential role, because
they contain the minimal number of edges required to connect all the entries
of the collection and induce a meaningful hierarchy within the data. For these
reasons, arborescences are widely used in structure inference, in numerous fields
ranging from bioinformatics [12] to computational linguistics [19]. For constructing
arborescences, distances have to be computed for data objects within the collection.

? Supported by Agence Nationale de la Recherche (ANR), projects STAP ANR-17-
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While the computation of distances is trivial for many kinds of simple data (e. g.,
vectors in Euclidean space), it is often challenging for more complex kinds of
data such as strings, trees, or graphs. For such data, edit distances — measuring
the distance between two objects o1 and o2 as the cost of modifications needed
to transform o1 into o2 — provide meaningful measures.

In this work, we propose a unified and generic framework for minimum arbores-
cence computation on collections of structured data for which an edit distance
is available. We introduce the concept of edit arborescence which generalizes
the concept of edit path (a sequence of edit operations, or modifications), and
we formalize the Minimum Edit Arborescence Problem (MEA). By using
appropriate edit cost functions over the edit operations, as well as different sets
of allowed edit operations, this generic framework allows to tackle a variety of
specific problems, such as event detection in time series [16], morphological forests
inference over a language vocabulary [18], or structured data compression [10].

As a proof of concept, we focus on the latter application, and address the
problem of compressing a collection of labeled graphs. To the best of our knowl-
edge, this problem has not been addressed in the literature. In graph stores,
each graph is encoded individually using space-efficient representations based
on different, mainly lossless compression schemes [3,4,8], but without taking
into account the other graphs in the store. This is also the case for lossy graph
compression schemes [22]. All of these compression schemes are beyond the main
focus of this paper, and we refer the reader to the above references.

Contrary to these schemes, our compression method relies heavily on reference-
based compression underpinned by an arborescence connecting the graphs of
the collection. Intuitively, each graph is represented by an edit path between its
parent graph and itself. Each graph can thus be reconstructed recursively up
to the root element of the arborescence, which we define as the empty graph.
Similar ideas have been proposed for compressing web graphs seen as a temporal
graphs with edge insertions and deletions [1], or collections of bitvectors using
the Hamming distance [9], recently applied to graph annotations (colors) [2].
While these approaches can be considered as early examples of using MEA in
compression, our formulation is more general.

We first formalize the concepts of edit distances and arborescences in Section 2.
In Section 3, we introduce edit arborescences and define MEA. Section 4 deals
specifically with graph data and the graph edit distance, and formalizes the
Minimum Graph Edit Arborescence Problem (MGEA). Section 5 provides
detailed explanations on how to make use of the MGEA to address the compression
of a set of labeled graphs. In Section 6, we report the results of the experimental
evaluation. Finally, Section 7 concludes the paper and points out to future work.

2 Preliminaries

We consider data (sequence, tree, graph) defined by a combinatorial structure
and labels attached to the elements of this structure. Labels may be of any type.
Unlabeled and unstructured data are special cases.
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Edit Distance. Given a space Ω of all data of a fixed type, an edit path is a
sequence of elementary modifications (or edit operations) transforming an object
of Ω into another one. Typical edit operations are the deletion and the insertion
of an element of the structure, and the substitution of an attribute attached
to an element. Given a cost function c ≥ 0 defined on edit operations, the edit
distance dc : Ω×Ω → R≥0 measures the minimal total cost required to transform
x ∈ Ω into y ∈ Ω, up to an equivalence relation: dc(x, y) := minP∈P(x,y) c(P ),
with c(P ) :=

∑
o∈P c(o) the cost of an edit path P , and P(x, y) the set of all edit

paths transforming x into an element of [y] := {z ∈ Ω | y ∼ z}, the equivalence
class of y for an equivalence relation ∼ on Ω. Equality is the equivalence relation
usually considered for strings or sequences (Hamming, Levenshtein or discrete
time warping distances). Isomorphism is used for trees and graphs.

The set Ω equipped with an edit distance dc defines an edit space (Ω, dc).
We assume that dc is metric or pseudometric (if ∼ is not equality). The set Ω
contains a null (or empty) element denoted by 0Ω ∈ Ω. Any other element of
(Ω, dc) can be constructed by insertion operations only from 0Ω .

Arborescences. A directed graph (digraph) is a pair G := (V,E), where V :=
{v0, .., vn} is a set of nodes and E ⊆ V × V is a set of directed edges. Within
such a graph, a spanning arborescence is a rooted, oriented, spanning tree, i. e.,
a set of edges that induces exactly one directed path from a root node r ∈ V
to each other node in V \ {r}. By assuming w. l. o. g. that the root element is
v0 and reminding that all other nodes in an arborescence have a unique parent
node, an arborescence can be represented by a sequence of node indices A such
that, for all i ∈ [1, n], A[i] denotes the index of the unique parent node of node
vi. The set of edges of A is denoted by EA.

3 The Minimum Edit Arborescence Problem

In this section, we introduce and describe the generic Minimum Edit Arbores-
cence Problem (MEA), a versatile problem. An instance of MEA is a finite
dataset X living in an edit space (Ω, dc). MEA asks for a minimum-cost edit
arborescence rooted at the null element.

Given a set X := {x0, x1, ..., xn} ⊂ Ω such that x0 := 0Ω, we define an edit
arborescence as a pair (A, Ψ), where A is a sequence of n indices that defines an
arborescence rooted at the index 0, such that for all i ∈ [1, n], A[i] is the parent-
index of i. Ψ := (P1, ..., Pn) is a sequence of edit paths, such that Pi ∈ P(xA[i], xi)
holds for all i ∈ [1, n], i. e., Pi is an edit path between xi and its parent in A.
A(X) is the set of all edit arborescences on X.

Definition 1 (MEA). Given a finite set X ⊂ Ω and an edit cost function c, the
Minimum Edit Arborescence Problem (MEA) asks for an edit arborescence
(A?, Ψ∗) on X ∪ {0Ω}, which is rooted at the null element 0Ω ∈ Ω and has a
minimum cost c(Ψ?) among all (A, Ψ) ∈ A(X), with c(Ψ) :=

∑
P∈Ψ c(P ).
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By definition, it holds that c(Ψ?) = min(A,Ψ)∈Ac(X)

∑
Pi∈Ψ dc(xA[i], xi), where

Ac(X) is the set of edit arborescences in (Ω, dc), i. e., edit arborescences with
edit paths restricted to minimal-cost edit paths w. r. t. c. This generic definition
can translate into various optimization problems, with different characteristics in
terms of complexity and/or approximability, depending on the edit space.

Exact Solver. Whenever exact edit distances and corresponding edit paths can
be computed, the following procedure produces an optimal solution for MEA:

1. Construct the complete directed weighted graph on the set X∪{0Ω}, denoted
by K(X, dc) := (V K, EK, w), with node set V K := X ∪{0Ω} and edge weights
w(u, v) := dc(u, v) for all (u, v) ∈ EK. Note that any edge entering the root
can be removed.

2. Solve the Minimum Spanning Arborescence Problem (MSA) onK(X, dc)
with 0Ω as root node.

For a connected weighted directed graph G and a root node r in G, the Minimum
Spanning Arborescence Problem (MSA) asks for a spanning arborescence
A? on G, which is rooted in r and has minimum weight w(A?), where w(A) :=∑

(u,v)∈A w(u, v) [13]. MSA can be solved in polynomial time, e. g., in O(|V G|2)

time with Tarjan’s implementation [23] of Edmonds’ algorithm [13]. Hence, the
main difficulty of the problem consists in computing the edge weights in K, i. e.,
the edit distances between elements of X.

Lemma 1. As long as the edit space (Ω, dc) allows for a polynomial time com-
putation of minimum-cost edit paths, the corresponding version of MEA belongs
to the complexity class P.

Proof. By assumption, dc is computed in polynomial time by some algorithm
ALG-DIST that is called O(n2) times with complexity OALG-DIST in order to generate
the complete graph K(X, dc). So, MEA can be solved in O(n2OALG-DIST + (n+ 1)2)
time complexity by using Tarjan’s implementation of Edmond’s algorithm. ut

A Heuristic for Non-Polynomial Cases. We adapt the algorithm described
above to cases where the edit distance is not solvable in polynomial time. The
method is based on approximations or heuristics to estimate the edit distance,
and allows the user to choose the desired balance between computation time
and accuracy. Also, the algorithm takes advantage of prior knowledge over the
data (such as relevant candidate couples of elements) which is often available
in practical cases. Given a set X ⊂ Ω, Algorithm 1 computes a low-cost edit
arborescence (A, Ψ) ∈ A(X) based on approximations or heuristics to estimate
the edit distance. It starts by constructing a size-reduced auxiliary digraph K
(lines 1 to 3) that connects 0Ω to each element xi ∈ X, and each xi to k ≤ |X|−1
randomly selected elements of X \ {xi}. If some promising edges are known a
priori (e. g., if X has an implicit internal structure), they are added to K. Then,
Algorithm 1 computes optimal or low-cost edit paths whose costs provide weights
for the edges of K (lines 4 to 8). For 0Ω’ out-edges, optimal edit paths can be
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Algorithm 1 A generic heuristic for MEA.

Require: A finite set X of elements from an edit space (Ω, d) with origin 0Ω , a
parameter k ∈ [0, |X − 1|], two edit distance heuristics ALG-1 and ALG-2.

Ensure: A low-cost edit arborescence (A, Ψ) for the MEA problem.
1: Set x0 := 0Ω and initialize auxiliary graph K(X ∪ x0, EK, w) with EK := {x0} ×X.
2: for x ∈ X do Sample k children X̃ ∈

(
X\{x}
k

)
and set EK := EK ∪ ({x} × X̃).

3: if prior information available then Add promising edges to EK.

4: for (xi, xj) ∈ EK do
5: if i = 0 then Analytically compute the edit path Pij .
6: else if identifiers available then Compute edit path Pij induced by identifiers.
7: else Call ALG-1 to compute low-cost edit path Pij .

8: Set w(xi, xj) := c(Pij).

9: Run Edmonds’ algorithm on K to obtain A.
10: if tightening then for i ∈ [1, n] do Call ALG-2 to compute tighter edit path PA[i]i.
11: for i ∈ [1, n] do Set Ψ [i] := PA[i]i.

12: return (A, Ψ)

computed analytically (insertions only). If identifying attributes are available for
all elements of X (e. g., unique node labels if X is a set of graphs), it is sometimes
possible to compute optimal edit paths from these identifiers. Otherwise, low-cost
edit paths are computed by calling a polynomial edit distance heuristic ALG-1.
Once all edge weights for K have been computed, an optimal arborescence A
on K is constructed by Edmonds’ algorithm (line 9). Optionally, a tighter edit
distance heuristic ALG-2 can be called to shorten the paths in A before returning
the edit arborescence (line 10). The more precise, and thus potentially more
costly heuristic ALG-2 is called only n times.

4 Minimum Graph Edit Arborescence Problem

In the remainder of the paper, we will focus on the specific case of MEA where
the space Ω is a space of labeled graphs.

Graphs. We assume that graphs are finite, simple, undirected, and labeled.
However, all presented techniques can be straightforwardly adapted to directed or
unlabeled graphs. A labeled graph G is a four-tuple G := (V G, EG, `GV , `

G
E), where

V G and EG are sets of nodes and edges, while `GV : V G → ΣV and `GE : EG → ΣE
are labeling functions that annotate nodes and edges with labels from alphabets
ΣV and ΣE , respectively. G(ΣV , ΣE), or G for short, denotes the set of all graphs
for fixed alphabets ΣV and ΣE . 0G denotes the empty graph (the null element
of G). Two graphs G,H ∈ G are isomorphic, denoted by G ' H, if and only if
there is a bijection between V G and V H that preserves both edges and labels.

Edit Operations and Edit Paths. We consider the following elementary edit
operations, where ε is a dummy node and ε` is a dummy label:
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– Node deletion (nd): (v, ε`), with v ∈ V G isolated.
– Edge deletion (ed): (e, ε`), with e ∈ EG.
– Node relabeling (nr): (v, `) ∈ V G × (ΣV \ {`GV (v)}).
– Edge relabeling (er): (e, `) ∈ EG × (ΣE \ {`GE(e)}).
– Node insertion (ni): (ε, `), with ` ∈ ΣV .

– Edge insertion (ei): (e, `) ∈ (
(
V G

2

)
\ EG)×ΣE .

For each edit path P composed of such operations, there are many equivalent
edit paths with a same edit cost, obtained just by reordering the operations in
P . In particular, as the deletion of a node assumes that its incident edges have
been previously deleted, these operations can be replaced by node-edge deletions
(ned): delete all the edges incident to a node and then delete this node. So we
can distinguish two different types of edge deletions: implied edge deletion (i-ed),
i. e., an edge deletion in a node-edge deletion, and non-implied edge deletion
(ni-ed), i. e., an edge deletion between two nodes that are not deleted by P .
The cost of an edit path P can thus be rewritten as c(P ) =

∑
t∈T

∑
o∈P t ct(o),

where P t is the (possibly empty) set of all edit operations of type t ∈ T , with
T := {ni-ed, i-ed,nd,nr, er,ni, ei}, and ct is an edit cost function for type t.

Remark 1. Any concatenation σni-ed(P ni-ed) t σi-ed(P i-ed) t . . . t σei(P ei) of edit
operations, with σt a permutation on P t, defines an edit path equivalent to P .

Remark 2. c(P ) =
∑
t∈T c

t|P t| if ct is a constant for each type of operation t.

Node Maps and Induced Edit Paths. A node map (or error-correcting
bipartite matching) between a graph G and a graph H is a relation π ∈ (V G ∪
{ε})× (V H ∪ {ε}) such that the following two conditions hold:

– For each node u ∈ V G, there is exactly one node v ∈ V H ∪ {ε} such that
(u, v) ∈ π. We denote this node v by π(u).

– For each node v ∈ V H , there is exactly one node u ∈ V G ∪ {ε} such that
(u, v) ∈ π. We denote this node u by π−1(v).

Let Π(V G, V H) be the set of all node maps. Each node map π ∈ Π(G,H) can
be transformed into an edit path, denoted by P [π] (induced edit path), such that,
for each (u, v) ∈ π, there is a corresponding edit operation (u, `): u is deleted if
v = ε, it is relabeled if (u, v) ∈ V G × V H and `GV (u) 6= `HV (v), or a new node is
inserted if u = ε. Operations on edges are induced by the operations on nodes,
i. e., from the pairs ((u, π(u)), (v, π(v)) with u, v ∈ V G ∪{ε}. For details, we refer
to [6]. What is important here is that any type of edit operation is taken into
account by a node map. In particular, implied and non-implied edge deletions
can be distinguished with a specific cost for each type.

Graph Edit Distance. The cost of an optimal edit path from a graph G to a
graph H ′ ' H defines the graph edit distance (GED) from G to H (dc with graph
isomorphism as equivalence relation): GED(G,H) := minP∈P(G,H) c(P ). GED
is hard to compute and approximate, even when restricting to simple special
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0G G1 G2 G3

G′1 G′2 G′3 G

P1 P2 P3

G0 G1 Gi−1 Gi

G′0 G′1 G′i−1 G′i

πG0,G1

πG0,G′0
πG1,G′1

πGi−1,G′
i−1

πGi−1,Gi

πGi,G
′
i

πG′0,G′1
πG′

i−1
,G′

i

(a) (b)

Fig. 1: (a) Paths in a non-reconstructible edit arborescence. (b) Composition of
node maps used to construct reconstructible edit arborescences.

cases [24,5]. However, many heuristics are able to reach tight upper and/or lower
bounds. They are based on a reformulation of GED as an Error-Correcting
Graph Matching Problem: GED(G,H) = minπ∈Π(V G,V H) c(P [π]), which
is equivalent to the above definition under mild assumptions on the edit cost
function c. We refer to [20,6] for an overview.

Problem Formulation and Hardness. We can now define MGEA:

Definition 2 (MGEA). The Minimum Graph Edit Arborescence Prob-
lem (MGEA) is a MEA problem with Ω :=G, X := {G1, ..., Gn} and dc := GED.

As the problem of computing GED is NP-hard, Lemma 1 does not apply here.

Theorem 1. MGEA is NP-hard.

The proof is omitted here due to space constraints, we refer the reader to [15] for
a detailed proof, based on a reduction from the Hamiltonian cycle problem.

5 Arborescence-Based Compression

In this section, we show how to leverage MGEA for compressing a set of labeled
graphs. For this, we introduce reconstructible and non-reconstructible edit ar-
borescences, formulate the Arborescence-Based Compression Problem
(ABC ), and present an encoding for induced edit paths.

Reconstructible Edit Arborescence. When dc := GED, since the definition
of GED is based on graph isomorphism, applying an induced edit path P [πG,H ]
to a graph G yields a graph H ′ ' H. When using such edit paths within an
edit arborescence (A, Ψ) ∈ A(X), with X ⊂ G a set of graphs, the configuration
described in Figure 1(a) occurs. Namely, the edit paths in Ψ may be disjoint due
to the isomorphism relation between the source graphs Gi and target graphs
G′i. Thus, the arborescence does not allow the reconstruction of any graph that
is not directly connected to the root element. In this sense, only specific edit
arborescences allow to reconstruct all graphs in X up to isomorphism.

Definition 3 (Reconstructability). An edit arborescence (A, Ψ) ∈ A(X) is
reconstructible if and only if each graph Gi ∈ X can be constructed up to
isomorphism by applying the sequence of edit paths P := (Ps1 , Ps2 , . . . , Pi) to the
empty graph 0G, where (0G, Gs1 , Gs2 , . . . , Gi) is the path from 0G to Gi in A.
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By composition of node maps (Figure 1(b)), it is easy to show the following
property (proof omitted due to space constraints).

Lemma 2. For any edit arborescence (A, Ψ) on a set of graphs X, there is a
reconstructible edit arborescence (A, Ψ ′) on a set X ′, such that X ′ is isomorphic
to X and it holds that c(Ψ ′) = c(Ψ).

By Definition 3, the set of graphs X can be reconstructed up to graph isomorphism
based on the encoding of a reconstructible edit arborescence.

Problem Formulation. For compressing a finite set of graphs X ⊂ G, we are
interested in finding a reconstructible edit arborescence (A, Ψ) ∈ A(X) with a
small encoding size |C(A, Ψ)|, where C(·) denotes the encoding (a binary string)
for the code C. Ideally we would like to minimize this size over A(X) and all
possible codes. To encode an edit arborescence, we encode both of its elements,
i. e., the arborescence A defined as a sequence of indices, and the sequence Ψ of
edit paths induced by the node maps. In order to derive a useful expression for the
code length function |C(·)|, the edit path encodings are concatenated. Thus, the
encoding size to optimize is given by |C(A, Ψ)| = |C(MA)|+|C(A)|+

∑
P∈Ψ |C(P )|,

where MA is the overhead for decoding the different parts of C(A, Ψ). In order
to optimize this size, we must define an encoding size preserving cost function
which forces the encoding sizes of edit paths to coincide with their edit cost.

Definition 4 (Encoding Size Preservation). Let C be a code for edit paths.
An edit cost function c is encoding size preserving w. r. t. code C if and only
if there is a constant γ such that |C(P )| = c(P ) + γ holds for any edit path P .
Put differently, an encoding size preserving cost function assigns to each edit
operation the space required in memory to encode the operations with code C.

Assuming that a code C and an encoding size preserving cost function c w. r. t. C
exist, the encoding size for any edit arborescence (A, Ψ) ∈ A(X) can be rewritten
as |C(A, Ψ)| = |C(MA)| + |C(A)| + c(Ψ) + γ|X|. Since the encoding size for
A depends only on the number of nodes, the problem of minimizing |C(A, Ψ)|
amounts to minimizing c(Ψ). Consequently, finding a compact encoding of a set
of graphs X reduces to a MGEA problem as introduced in Section 4.

Definition 5 (ABC ). Let X := {G1, . . . , Gn} ⊂ G be a finite set of graphs, C
be a code for edit paths, and c be an encoding size preserving edit cost function
for C. Then, the Arborescence-Based Compression Problem (ABC ) asks
for a minimum weight reconstructible edit arborescence (A, Ψ ′) on some set of
graphs X ′ := {G′1, . . . , G′n} such that, for all i ∈ [1, n], G′i ' Gi.
We stress that, thanks to the use of encoding size preserving edit costs, the
value that is optimized by ABC corresponds to the length of the code C(A, Ψ ′)
up to a constant. In other words, solving ABC produces the most compact
arborescence-based representation of X. Given the simple correspondence between
reconstructible edit arborescences and their non-reconstructible counterparts,
ABC reduces to MGEA by restricting to encoding size preserving edit costs.
Since MGEA is NP-hard (Theorem 1), we propose to heuristically compute a
low-cost edit arborescence as detailed below.
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Algorithm 2 ABC encoding of graph collections.

Require: A set of graphs X, a code C, and an edit cost function c.
Ensure: Encoding C(A, Ψ ′) of a reconstructible edit arborescence (A, Ψ ′) on X.
1: Compute (A, Ψ) with Algorithm 1.
2: Initialize list L := [(0G, πid)], where πid is the identity.
3: Initialize encoding C(A, Ψ ′) := C(MA)C(EA).
4: while L 6= ∅ do
5: Pop an element (Gi, πGi,G

′
i
) from L.

6: for all children Gj of Gi in A do
7: Get π ∈ Π(Gi, Gj) with P [π] = Ψ [j] and initialize node ID v′ := 1.
8: Initialize π′ ∈ Π(G′i, G

′
j) as node map of insertions and deletions only.

9: for all v ∈ V Gi if π(v) 6= ε then Set π′(πGi,G
′
i
(v)) := v′ and increment v′.

10: Concatenate C(P [π′]) to C(A, Ψ ′).
11: if Gj is no leaf in A then Append (Gj , π

′ ◦ πGi,G
′
i
◦ π−1) to L.

12: return C(A′, Ψ ′)

Heuristic Solver for ABC. Algorithm 2 sketches our strategy to tackle the
ABC problem. Given a set X of graphs, it first uses Algorithm 1, which outputs
a non-reconstructible edit arborescence (A, Ψ) on X. After initializing the code,
it starts encoding a reconstructible edit arborescence by going through the
arborescence in BFS order (line 4). For each new node Gj with parent node Gi,
a node map π′ from G′i ' Gi to G′j ' Gj is reconstructed (lines 7 to 9), and the
code of its induced edit path is added to the code of the arborescence (line 10).
If Gj is not a leaf, the node map representing the isomorphism between Gj and
G′j is computed for later use (line 11).

Remark 3 (Star Ratio). In the worst case, we obtain a star S ∈ A(X), which
connects the empty graph 0G to all the graphs in X. This yields the upper
bound |C(A, Ψ)| ≤ |C(S)| on the encoding size of the obtained arborescence.
Since encoding a graph from the empty graph by insertion operations only is
similar to encoding the graph itself, the encoding size for the star is close to the
encoding size for X, for a similar encoding strategy. Consequently, the star ratio
|C(A)|/|C(S)| provides a good indicator for the compression quality.

Remark 4. The encoded structure is designed to allow a straightforward decom-
pression of any graph Gi, which, starting from the empty graph, simply consists
in consecutively applying the edit paths along the path from the root to Gi in A.

A Code for Induced Edit Paths. We show that there is a code C for edit
paths and an edit cost function c such that c is encoding size preserving w. r. t. C.
Using the notations introduced in Section 4, we encode an edit path as the con-
catenated string C(P [π]) := C(MP )C(P ni-ed)C(P nd)C(P nr)C(P er)C(P ni)C(P ei),
where MP denotes the overhead for decoding each string C(P t). Note that the
set P i-ed is not encoded, since implied edge deletions can be implicitly repre-
sented by node deletions. Similarly, we encode a set of edit operations P t as
C(P t) := C(ot1)C(ot2) · · ·C(ot|P t|), with oti ∈ P t. Any edit operation o := (a, `) is
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encoded as C(o) := C(a)C(`), with C(a) := ∅ if a = ε, and C(`) := ∅ if ` = ε`.
That is, the dummy elements ε and ε` in deletion operations and node insertions
are not encoded. Ultimately, the encoding size for P [π] hence depends on how
the nodes, edges, and their labels are encoded in the codes of the edit operations.

We consider fixed-length codes for nodes, edges, and their labels (other codes
will be studied in future works). For a set X ∈ G, nodes are encoded as integers
on βV bits, edges are encoded as a pairs of integers on 2βV bits, and node or edge
labels are encoded on, respectively, βΣV

and βΣE
bits. Dictionaries can be used for

the labels and encoded in the overhead MA or known a priori. In order to decode
each set of edit operation P t, MP must contain their sizes |P t|. They are encoded
on βP bits for each edit path. We obtain |C(P [π])| = βP +

∑
t∈T c

t|P t|, where

cnr := βV + β`V , cnd := βV , cni := βΣV
, cer := cei := 2βV + βΣE

, ced-ni := 2βV ,
and ced-i := 0. With these constant costs, the pair (C, c) defined above is encoding
size preserving (Remark 2 and Definition 4) with constant βP for any node map
π, i. e., |C(P [π])| = c(P [π]) +βP . Therefore, the encoding size for a spanning edit
arborescence (A, Ψ) ∈ A(X) reduces to |C(A, Ψ)| = |C(MA)|+ |C(A)|+ c(Ψ) +
βP |X|, which implies that minimizing |C(·)| is an ABC problem.

6 Experiments

We performed an empirical evaluation of our compression method in the context
of data archiving. Since no dedicated algorithms for compressing graph collections
exist in this context, we compared it to the generic tar.bz compression, sufficient
to highlight the potential of our method. Other generic compression tools such
as zip or tar.gz yielded worse compression ratios than tar.bz in initial tests.

Datasets. We used eight different datasets (Table 1). The datasets aids and
muta from the IAM Graph Database Repository [21], and acycl, pah, and
mao from GREYC’s Chemistry Dataset4 contain graphs modeling chemical
compounds. We also tested on time-evolving minimum spanning trees (MSTs)
induced by the pairwise correlations of a large-scale U. S. stocks time series
dataset.5 Such MSTs are widely used for detecting critical market events such as
financial crises [11,17]. We constructed three versions of the MSTs with the code
in [17]: stocks-f (edge labels are floating-point stocks correlations), stocks-i
(the correlations are rounded to integers), and stocks-n (no edge label). For all
datasets, graphs were initially stored in GXL format.6

Parameters and Implementation. We tested two versions of our ABC
method (Algorithm 2) — with and without additional tar.bz compression of
the obtained codes. For both versions, the out-degree k of all nodes in K was
varied across {0.1 · |X|, 0.2 · |X|, . . . , 1.0 · |X|}, and we did 5 repetitions for each
value. For the experiments reported in Table 2, we performed 10 repetitions for

4 https://brunl01.users.greyc.fr/CHEMISTRY/index.html
5 https://www.kaggle.com/borismarjanovic/price-volume-data-for-all-us-stocks-etfs
6 https://userpages.uni-koblenz.de/~ist/GXL/index.php

https://brunl01.users.greyc.fr/CHEMISTRY/index.html
https://www.kaggle.com/borismarjanovic/price-volume-data-for-all-us-stocks-etfs
https://userpages.uni-koblenz.de/~ist/GXL/index.php
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Table 1: Number of graphs |X|, maximum and average number of nodes |V |, as
well as node and edge label alphabet sizes |ΣV | and |ΣE | for all datasets.

dataset |X| max |V | avg |V | |ΣV | |ΣE | dataset |X| max |V | avg |V | |ΣV | |ΣE |

acycl 183 11 8.15 3 1 mao 68 27 18.38 3 4

muta 4337 417 30.32 14 3 stocks-n 1600 213 212.99 213 0

aids 1500 95 15.72 ∞ 3 stocks-i 1600 213 212.99 213 100

pah 94 28 20.7 1 1 stocks-f 1600 213 212.99 213 ∞
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Fig. 2: Mean compression ratios w. r. t. out-degree k for tar.bz and ABC w/ or
w/o tar.bz. For stocks, the values for k = 0 in the plots correspond to the
setting where the auxiliary graph K only contains temporal edges.

each dataset. For stocks, we also added all temporal edges to K and always used
the node maps induced by the stock identities across time (cf. lines 3 and 6 in
Algorithm 1). On the other datasets, the node maps were computed and refined
using the GED heuristics ALG-1 := BRANCH-UNIFORM [25] and ALG-2 := IPFP [6].
All algorithms were implemented in C++ using the GED library GEDLIB [7]
and the MSA library MSArbor [14].7 Tar.bz compressions were performed at the
default compression level (9, i.e. the highest compression). Tests were run on a
Linux system with an Intel Haswell CPU (24 cores, 2.4 GHz each) and 19 GB of
main memory.

Compression Ratio. Figure 2 shows that, for all datasets except pah, ABC
with tar.bz significantly outperformed tar.bz compression alone and led to smaller

7 https://github.com/lucasgneccoh/gedlib

https://github.com/lucasgneccoh/gedlib
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Table 2: Mean compression and decompression times (in sec.), and standard
deviations, of ABC with tar.bz for k = 0.4 · |X|, as well as mean depths, star
ratios, numbers of leafs |L| and inner nodes |I| of the computed arborescences.

dataset |L| |I| avg depth star ratio compression decompression

acycl 65 118 19.5 0.37 8 ± 0.6 0.3 ± 0.02

muta 1751 2586 95.4 0.47 16052 ± 2385.0 14.6 ± 1.34

aids 641 859 46 0.63 673 ± 59.0 5.5 ± 0.31

pah 35 59 13.8 0.38 16 ± 1.3 0.3 ± 0.04

mao 23 45 13.3 0.17 13 ± 1.6 0.2 ± 0.02

stocks-n 133 1467 75.9 0.51 1662 ± 31.9 15.0 ± 0.61

stocks-i 153 1446 441.5 0.71 2095 ± 46.8 18.7 ± 0.37

stocks-f 148 1452 426.3 0.71 2166 ± 28.5 18.9 ± 0.43

compression ratios than ABC w/o tar.bz for all datasets except acycl. Using
out-degrees k > 0.4 · |X| only marginally improved compression. For stocks,
using only temporal edges (k = 0) led to very good results. Moreover, stocks-n
can be more compressed with ABC than the other stocks datasets, as cheaper
edit paths can be computed for graphs with unlabeled edges.

Arborescence Structure, Star Ratio, and Runtime. Columns 2 to 4 of
Table 2 provide statistics regarding the arborescences computed with k = 0.4 · |X|.
They seem to have a good balance between depth and width (number of leaves vs.
number of internal nodes). The star ratios (column 5) indicate how much space
is gained by using ABC w. r. t. encoding each graph separately with the same
underlying encoding scheme (a star ratio of 1 means no compression). Columns
6 to 9 summarize the ABC compression and decompression times. The most
important observation is that, although ABC is much slower than tar.bz, the
runtimes are still acceptable in application scenarios where a data holder wants
to offer compressed graph datasets for download (compressing the largest dataset
muta took about four to five hours). Indeed, unlike compression, decompression
is fast even on the largest datasets (a couple of seconds). Runtime variations
w. r. t. k are detailed in Figure 3 for four datasets. As expected, the time required
for computing the arborescences increases linearly with k, and the runtime of
the refinement phase is independent of k. As the refinement algorithm IPFP is
randomized, the runtimes of the refinement phase have a higher variability than
the runtimes of the arborescence phase.

7 Conclusions

In this paper, we have proposed the concept of an edit arborescence and have
introduced the Minimum Edit Arborescence Problem (MEA). MEA yields
a generic framework for inferring hierarchies in finite sets of complex data objects
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Fig. 3: Means and standard deviations of runtimes (in sec.) for ABC with tar.bz
and its subroutines, and tar.bz alone. ABC -total includes the final tar.bz step.

such as graphs or strings, which can be compared via edit distances. We have shown
how to leverage MEA for the lossless compression of collections of labeled graphs —
a task, for which no dedicated algorithms are available to date. Experiments
on eight datasets show that our approach ABC clearly outperforms standard
compression tools in terms of compression ratio and that it achieves reasonable
compression and decompression times. More precisely, the experiments showed
that (1) on seven out of eight datasets, our ABC method clearly outperformed
tar.bz compression in terms of compression ratio; (2) compressing with ABC is
computationally expensive but still reasonable in settings where the compression
is carried out by an institutional data holder; (3) decompression is much faster
and only takes a couple of seconds even for the largest test datasets.
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