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Abstract. Finding the graphs that are most similar to a query graph in
a large database is a common task with various applications. A widely-
used similarity measure is the graph edit distance, which provides an
intuitive notion of similarity and naturally supports graphs with ver-
tex and edge attributes. Since its computation is NP-hard, techniques
for accelerating similarity search have been studied extensively. How-
ever, index-based approaches for this are almost exclusively designed for
graphs with categorical vertex and edge labels and uniform edit costs.
We propose a filter-verification framework for similarity search, which
supports non-uniform edit costs for graphs with arbitrary attributes. We
employ an expensive lower bound obtained by solving an optimal assign-
ment problem. This filter distance satisfies the triangle inequality, mak-
ing it suitable for acceleration by metric indexing. In subsequent stages,
assignment-based upper bounds are used to avoid further exact distance
computations. Our extensive experimental evaluation shows that a sig-
nificant runtime advantage over both a linear scan and state-of-the-art
methods is achieved.

Keywords: Graphs · Similarity search · Graph edit distance.

1 Introduction

Graph-structured data is ubiquitous in many areas such as chemo- and bioinfor-
matics or computer vision. A common task is to search a database containing a
large number of graphs for those that are most similar to a given query graph.
Such queries are submitted directly by the user or occur as subproblems in
downstream machine learning algorithms. A widely accepted concept of graph
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similarity is the graph edit distance, which is the minimum cost for transform-
ing one graph into the other by a sequence of edit operations. A strength of
this measure is that it can elegantly be applied to graphs with vertex and edge
attributes by defining the costs of edit operations adequately. For example, to
compare protein graphs where vertices are annotated by the amino acid sequence
of the secondary structure elements they represent, the Levenshtein distance was
used [20].

However, the vast majority of efficient methods for similarity search in graph
databases are limited to the special case where graphs have categorical labels
and the costs of edit operations are uniform (either zero or one) [28, 30, 26, 25,
29, 31, 16, 13, 10]. A fairly recent development in this domain are neural graph
embeddings, e.g. [19], which do not return exact similarity search results. For the
pairwise computation of the graph edit distance, several exact approaches [10,
15] and heuristics such as bipartite graph matching based on optimal vertex
assignments [20] have been proposed, many of which support the graph edit
distance in its full generality [15, 20]. Several of these yield lower and upper
bounds on the graph edit distance as a byproduct, which have just recently been
compared systematically [4]. However, these lower bounds for the general graph
edit distance are not yet widely used for similarity search in graph databases.
For the methods based on optimal vertex assignments, it has only recently been
shown how to derive a distance termed Branch that is guaranteed to be a lower
bound and proven to satisfy the triangle inequality [2]. Branch has been shown
to provide an excellent trade-off between tightness and running time [4].

We propose a filter-verification framework for similarity search, which sup-
ports the general graph edit distance with arbitrary metric edit costs and is
hence suitable for graphs with any attributes comparable with a distance mea-
sure. We employ Branch as an initial filter accelerated by metric indexing. In
the next stages, we derive upper bounds from the optimal assignment and im-
prove them via local search to reduce the candidate set further, before performing
verification by exact computation of the graph edit distance. We experimentally
evaluate our approach on graphs with attributes and categorical labels showing
the effectivity of the filter pipeline. The results show that our approach allows
scalable similarity search in attributed graphs with non-uniform edit costs. For
the special case of uniform edit costs, where competing methods are available,
our approach is shown to outperform the state of the art.

2 Related Work

We discuss approaches for similarity search regarding the graph edit distance
and methods for its pairwise exact or approximate computation.

2.1 Similarity Search in Graph Databases

Methods for similarity search in graph databases can be divided into two cate-
gories, depending on whether they compare overlapping or non-overlapping sub-
structures. The methods k-AT [25], CStar [28], Segos [26] and GSim [30] belong
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to the first category. These techniques are inspired by the q-grams used in the
computation of the string edit distance. Either q-grams based on trees [25, 28,
26] or paths [30] are used. The methods Pars [29], MLIndex [16], and Inves [13]
partition the graphs into non-overlapping substructures. They essentially obtain
lower bounds based on the observation, that if x non-overlapping substructures
of a database graph are not contained in the query graph, the graph edit dis-
tance is at least x. Pars uses a dynamic partitioning approach to achieve this,
while MLIndex uses a multi-layered index to manage multiple partitions for
each graph. Inves is a method used to verify whether the graph edit distance
of two graphs is below a specified threshold by first trying to generate enough
mismatching non-overlapping substructures. Mixed [31] combines the idea of q-
grams and graph partitioning. These methods only allow uniform edit costs and
are therefore not suitable for graphs with continuous attributes.

The concept of a median graph of a set of graphs regarding the graph edit
distance has been studied extensively, see [3] and references therein. An appli-
cation of median graphs is their use as routing objects in hierarchical index
structures [23, 3]. However, we are not aware of any concrete realization using
this concept in a setting comparable to ours.

2.2 Pairwise Computation of the Graph Edit Distance

For computing the exact graph edit distance, both general-purpose algorithms [15]
as well as approaches tailored to the verification step in graph databases have
been proposed [9], which are usually based on depth- or breadth-first search [12,
9], or integer linear programming [15]. As the exact computation of the graph edit
distance is not feasible for larger graphs, many heuristics have been proposed,
e.g., [14, 20, 4, 18, 2, 11]. The properties of the dissimilarities obtained from these
are in general not well investigated. For heuristics based on optimal vertex as-
signment [20], which are widely used in practice [24], a variant called Branch
was recently studied thoroughly [2]. Branch is a lower bound on the graph edit
distance, a pseudo-metric on graphs and supports arbitrary cost models (c.f.,
Section 4.1).

3 Preliminaries

We introduce the required basic concepts of graph theory and discuss database
search with a focus on the metric space.

3.1 Graph Theory

A graph G = (V,E, µ, ν) consists of a set of vertices V (G), a set of edges
E(G) ⊆ V (G) × V (G) between vertices of G, a labeling function for the ver-
tices µ : V (G) → L, and a labeling function for the edges ν : E(G) → L. We
discuss only undirected graphs and denote an edge between u and v by uv. The
set of neighbors of a vertex v ∈ V (G) is denoted by N(v) = {u | uv ∈ E(G)}.
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Table 1: Notation for edit costs.
cv(u, v) Cost of substituting vertex u with vertex v (adjusting the label/attributes)
cv(u, ε) Cost of deleting the isolated vertex u
cv(ε, v) Cost of inserting the isolated vertex v
ce(uv,wx) Cost of substituting edge uv with edge wx (adjusting the label/attributes)
ce(uv, ε) Cost of deleting the edge uv
ce(ε, wx) Cost of inserting the edge wx

The set L can be categorical labels or arbitrary attributes including real-valued
vectors and complex objects such as strings.

A measure commonly used to describe the dissimilarity of two graphs is the
graph edit distance, which is the minimum cost for transforming one graph into
the other using edit operations. An edit operation can be deleting or inserting
an isolated vertex or an edge or relabeling any of the two. An edit path from
graph G1 to G2 is a sequence of edit operations (e1, e2, . . . ) that transforms G1

into G2.

Definition 1 (Graph Edit Distance [20]). Let c be an edit cost function
assigning non-negative costs to edit operations. The graph edit distance between
two graphs G1 and G2 is defined as

dged(G1, G2) = min
{∑k

i=1 c(ei) | (e1, . . . , ek) ∈ Υ (G1, G2)
}
,

where Υ (G1, G2) is the set of all possible edit paths from G1 to G2.

The costs of the different edit operations can be chosen as required for the
specific use case, see Table 1 for our notation. If the edit costs are symmetric, non-
negative, and strictly positive for each non-identical edit operation, the graph
edit distance is a metric on graphs, treating graph isomorphism as identity [3].
Note that this holds even if the edit costs do not satisfy the triangle inequality
(and hence are no metric), because the graph edit distance uses the edit path
with minimal cost. In this work, we nonetheless assume that the edit costs respect
the triangle inequality, i.e., we assume that the following inequalities hold:4

cv(u,w) ≤ cv(u, v) + cv(v, w) ∀(u, v, w) ∈ V3 (1)

cv(u, v) ≤ cv(u, ε) + cv(ε, v) ∀(u, v) ∈ V2 (2)

ce(uv, yz) ≤ ce(uv,wx) + ce(wx, yz) ∀(uv,wx, yz) ∈ E3 (3)

ce(uv,wx) ≤ ce(uv, ε) + ce(ε, wx) ∀(uv,wx) ∈ E2 (4)

Equations (1), (3), and (4) can be enforced via pre-processing without chang-
ing the graph edit distance and can hence be assumed to hold w.l.o.g. [5].

4 For simplicity of notation, we have defined the costs on the vertices and edges in-
stead of their labels. Hence, the sets V and E are all possible vertices and edges,
respectively.
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E.g., if we have c(u, v)>c(u,w)+c(w, v), we can simply substitute c(u, v) with
c(u,w)+c(w, v), because a minimum cost edit path cannot contain c(u, v). The
only remaining constraint, Equation (2), is met (to the best of our knowledge)
in all applications where the graph edit distance is used to address real-world
problems [24]. Computing the graph edit distance is NP-hard [29], rendering
exact computation possible for small graphs only. There are several heuristics,
many of which are based on solving an assignment problem.

Definition 2 (Assignment Problem). Let A and B be two sets with |A| =
|B| = n and c : A×B → R a cost function. An assignment between A and B is
a bijection f : A → B. The cost of an assignment f is c(f) =

∑
a∈A c(a, f(a)).

The assignment problem is to find an assignment with minimum cost.

For an assignment instance (A,B, c), we denote the cost of an optimal assignment
by dcoa(A,B). The assignment problem can be solved in cubic running time using
a suitable implementation of the Hungarian method [8].

3.2 Searching in Databases

Databases provide means to store data to be able to retrieve, insert or change it
efficiently. In the context of data analysis, retrieval (search) is usually the crucial
operation on databases, because it will be performed much more often than
updates. We focus on two important types of similarity queries when searching
a database DB, the first of which is the range query for a radius r:

Definition 3 (Range Query). A range query range(q, r), with query object
q and range r, returns all objects in the database with a distance to the query
object not exceeding the range, i.e., range(q, r) = {o ∈ DB | d(o, q) ≤ r}.

The second type of query considered here is the k-nearest neighbor query.

Definition 4 (k-Nearest Neighbor Query). A k-nearest neighbor query
(kNN query) NN(q, k) with query object q and parameter k returns the smallest
set NN(q, k) ⊆ DB, so that |NN(q, k)| ≥ k and
∀o ∈ NN(q, k),∀o′ ∈ DB \NN(q, k) : d(o, q) < d(o′, q).

In conjunction with range queries, it is preferable to return all the objects with
a distance (including the query object, if part of the database), that does not
exceed the distance to the kth neighbor, which may be more than k objects when
tied. That yields an equivalency of the results of kNN queries and range queries,
i.e., we have range(q, r)= NN(q, | range(q, r)|) and NN(q, k)= range(q, rk), where
rk is the maximum distance in NN(q, k). Provided that the distance used is a
metric, both types of queries can be accelerated using metric indices. In our work,
we use the vantage point tree (vp-tree) [27] as a classical method and the more
recent cover tree [1], because they are available in the ELKI framework [21],
but others could also be used. While the vp-tree is a height balanced binary
tree dividing the data into near and far halves of the dataset based on the
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Fig. 1: Overview of the filter pipeline. For general metric edit costs the blue
modules are used; yellow modules are more efficient for uniform (edge) edit
costs.

median distance from the vantage point, the cover tree controls the expansion
rate by reducing the maximum radius in each level of the tree, branching out if
necessary into multiple branches. In both trees, queries are performed top-down
by traversing all paths that cannot be dismissed using the routing objects and
employing the triangle inequality.

4 Efficient Filtering for the General Graph Edit Distance

We propose a filter pipeline for range queries regarding the graph edit distance
following a common paradigm for expensive distances, see e.g. [28]. Here, lower
bounds allow to filter out graphs that do not satisfy the query predicate. For
the remaining candidates, upper bounds are evaluated to add them immediately
to the result set without exact distance computation. Finally, in the verification
step, the exact distance is computed for the remaining candidates only. Our
approach starts with the optimal assignment based lower bound Branch accel-
erated by metric indexing. From the same optimal assignment, an upper bound is
derived (BranchUB) and subsequently refined by local search (BranchRUB)
before the remaining candidates are verified. The pipeline is illustrated in Figure
1, the individual steps are described in the following.

4.1 Index-Accelerated Lower Bound Filtering

Several lower bounds on the graph edit distance have been proposed or can be de-
rived from known heuristics, see [4]. One of the most effective lower bounds with
an excellent trade-off between tightness and runtime is referred to as Branch.

Definition 5 (Branch Distance). For two graphs G1 and G2 the branch dis-
tance is defined as dbranch(G1, G2) = dcoa(V (G1) ∪ ε1, V (G2) ∪ ε2), where εi
denotes a multiset of ε elements, so that |V (Gi) ∪ εi| = |V (G1) ∪ V (G2)| for
i ∈ {1, 2}, and

c(u, v) =


0 if u = v = ε

cv(u, v) + de(u, v) if u 6= ε and v 6= ε

cv(ε, v) + 1/2 ·
∑

n∈N(v) ce(ε, vn) if u = ε and v 6= ε

cv(u, ε) + 1/2 ·
∑

n∈N(u) ce(un, ε) if u 6= ε and v = ε

,

with de(u, v) = dc
′

oa(N(u) ∪ εu, N(v) ∪ εv), where c′(w, x) = 1/2 · ce(uw, vx).
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Remark 1. Note that, by using a customized version of the Hungarian algorithm,
Branch can also be implemented in a slightly more efficient way, where only
one dummy vertex ε is added to the vertex sets V (G1) and V (G2) (see [7] for
details). In this paper, we use the classical implementation employed in [20, 2],
which corresponds to the characterization provided in Definition 5.

Branch has its origin in one of the most successful heuristics for the graph
edit distance proposed by Riesen and Bunke [20]. However, in contrast to the
original approach, it is guaranteed to underestimate the graph edit distance by
dividing all edge costs by two to avoid that the cost of a single edge edit op-
eration is counted twice, once for each endpoint [2]. Since an instance of the
assignment problem on the vertices of the two graphs has to be solved, and for
each vertex pair an assignment on their edges, Branch can be computed in
O(n2∆3 + n3) time for graphs with n vertices and maximum degree ∆. In the
case of uniform edge edit costs, de can be computed by multiset intersection of
edge labels and the running time reduces to O(n3). This special case is referred
to as BranchConst [2]. It has been shown that, if the edit costs are metric,
the branch distance is a pseudo-metric on graphs [2]. This allows to acceler-
ate computing the candidate set w. r. t. this lower bound by employing metric
indexing.

4.2 Upper Bound Filtering and Verification

From the solution of the assignment problem of Branch, an upper bound can
be obtained by deriving the corresponding edit path [20], denoted BranchUB
here. By definition of the graph edit distance, the cost of every edit path is an
upper bound of the graph edit distance. Following [28], we refine the assignment
by local search to gain a tighter upper bound. Starting with the assignment
obtained for the lower bound, the mapping of two vertex pairs is iteratively
swapped, and kept whenever it induces a cheaper edit path, until there is no
improvement. We refer to the refined upper bound obtained from the Branch
assignment as BranchRUB.

Eventually, the graphs that were neither filtered out by the lower bound
nor approved by the upper bounds are verified by exact graph edit distance
computation. We use BSS GED [10] for datasets with discrete labels and uniform
costs and BLPF2-V otherwise. The latter is based on the integer programming
formulation F2 of [15] with the additional constraint that the objective function
does not exceed the threshold to allow for early termination.

4.3 Nearest-Neighbor Queries

For kNN queries it is not possible to separate the different steps of the filter
pipeline as clearly as shown in Figure 1. We realize kNN queries using the optimal
multi-step k-nearest neighbor search algorithm [22]. The database graphs are
scanned in ascending order according the lower bound Branch regarding the
query graph. For each graph, the exact graph edit distance is computed and the k
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Table 2: Datasets and their statistics [17]. Some datasets contain graphs with
labeled or attributed vertices and edges, as can be seen in the last two columns.

Name |Graphs| avg |Vertices| avg |Edges| Labels (V/E) Attributes (V/E)

Cuneiform 267 21.27 44.80 +/+ +/+
Fingerprint 2800 5.42 4.42 –/– +/+
Letter-high 2250 4.67 4.50 –/– +/–
Letter-low 2250 4.68 3.13 –/– +/–
MUTAG 188 17.93 19.79 +/+ –/–
PTC FM 349 14.11 14.48 +/+ –/–
QM9 129433 18.03 18.63 –/– +/+

graphs with the smallest exact graph edit distance are maintained. Once we have
found at least k objects with an exact distance smaller than the lower bound of all
remaining objects, the search can be terminated. This is optimal in the sense that
none of the exact distance computations could have been avoided [22]. Accessing
the graphs ordered regarding the Branch lower bound can be achieved näıvely
by sorting all graphs, or by using suitable metric index structures.

5 Experimental Evaluation

In this section, we experimentally address the following research questions:

Q1 What speed-up in range queries can be achieved when using metric indices
compared to a linear scan of the database?

Q2 How effective are the individual lower and upper bounds in our pipeline?
Q3 Can the proposed filter pipeline compete with state-of-the-art methods for

uniform edit costs?
Q4 What speed-up in kNN queries can be achieved when using metric indices?
Q5 Does the proposed filter pipeline scale to a very large dataset?

5.1 Setup

As metric index we chose the vp-tree as a classical method and the cover tree as
a state-of-the-art approach. For both we used the implementation provided by
ELKI [21] with a sample size of 5 for the vp-tree and an expansion rate of 1.2
for the cover tree.

For a comparison in databases containing graphs with categorical labels, we
used MLIndex [16] and GSim [30], since the former is considered state-of-the-art,
while the latter provided much better results in our experiments. For MLIndex
the number of partitions was set to threshold+1 and in GSim all provided filters
were used. We used the implementations provided by the authors. In addition, we
used CStar [28], which follows a filter-verification approach related to ours. For
verification we used BSS GED [10] and BLPF2-V [15] with the Gurobi solver.

We conducted experiments on a wide range of real-world datasets with dif-
ferent characteristics, see Table 2. The costs of inserting, deleting or relabeling
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Fig. 2: Runtime comparison for filtering 100 range queries using Branch with
thresholds 1 to 5 and preprocessing time for constructing the index.

a vertex or edge with a categorical label were set to 1, which is equivalent to
the fixed setting in MLIndex, GSim, and CStar. For continuous attributes, the
Euclidean distance was used to define the relabeling cost. For simplicity, we
did not use domain-specific distances. Continuous attributes were normalized
to the range [0, 1] (separately for each dimension), to make distances roughly
comparable between different datasets.

5.2 Results

We report on our findings regarding the above research questions.

Q1: Speed-up of range queries through metric indices. We first investigate how
much of a speed-up can be achieved by using an index structure when filtering
candidates for a range query by a lower bound. We randomly sampled 100 graphs
from the dataset to be queries and then performed lower bound filtering without
an index, using the cover tree, and the vp-tree.

Figure 2 shows the time needed for filtering 100 range queries (each with
thresholds 1 to 5) and additionally the preprocessing time for index construc-
tion. The runtime does not depend on the given threshold for a linear scan, but
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Fig. 3: Average number of initial candidates (dashed) and hits identified in the
different stages of the filter pipeline for each threshold.

increases for the metric indices with the threshold, in particular for the Let-
ter -datasets. It can be seen that, while on most datasets both index methods
provide the same runtime benefit for filtering, the cover tree is much faster in
preprocessing than the vp-tree. The runtime advantage on the Letter -datasets
is quite small for larger thresholds. The runtime of the index structures directly
corresponds to the number of Branch distance computations. Compared to the
cover tree, the vp-tree requires many more distance computations in the prepro-
cessing due to the chosen sample size. In general, the runtime corresponds to
the number of candidates, which we investigate in the following.

Q2: Filter pipeline. In this experiment we investigate how the candidate and
result set are updated during filtering. Figure 3 shows the average number of
candidates for Branch and the number of results after each step for 100 range
queries. When comparing the size of the candidate sets with the results of the
previous experiment, it can be seen, that the runtime for filtering highly depends
on the number of candidates. For some datasets almost all candidates remaining
after the upper bound filtering are not results. This indicates that improvement is
possible with tighter lower bounds. In general, BranchRUB manages to report
almost all results, except in dataset MUTAG.

Q3: Comparison with state-of-the-art methods. Many methods for similarity
search in graph databases limited to uniform edit costs have been proposed. We
compare to MLIndex [16], CStar [28] and GSim [30]. We used BSS GED [10]
for a fast verification in our filter pipeline, as well as in CStar. The implementa-
tions of MLIndex and GSim contain their own verification algorithm. Figure 4
shows the runtime for preprocessing and filtering as well as the total query time
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Fig. 4: Runtime for answering 100 range queries and average number of candi-
dates remaining after applying all filters for thresholds 1 to 5. Our approaches
are shown with dashed lines and are marked bold in the legend. For MLIndex no
verification time is given, since it did not finish within the time limit of 2 days.

including filtering and verification for 100 range queries. The average number of
candidates remaining after application of all filters in the different methods is
also shown. Only these need to be verified by exact graph edit distance compu-
tation. For Branch only one line is shown, since linear scan, vp-tree and the
cover tree variant apply the same filters and generate the same candidates.

MLIndex produces the largest candidate set, and did not finish the verifi-
cation process in the time limit. It can be seen that, while GSim is quite fast
in preprocessing and filtering, the verification step takes a long time. This is
due to a combination of a slower verification algorithm and a higher number
of candidates that have to be verified. The results indicate that, even when us-
ing BSS GED for verification, the approach would not be competitive with the
cover tree due to the high number of candidates. CStar needs much more time
for filtering and cannot filter out as many candidates leading also to a higher
verification time. Interestingly, the time for verification does not increase propor-
tionally to the number of candidates, which might indicate, that the verification
algorithm needs more time to verify certain difficult graphs.

Q4: Speed-up of kNN queries through metric indices. We investigate how much
of a speed-up can be achieved by using an index structure compared to not using
one, when answering kNN queries using the optimal multi-step k-nearest neigh-
bor search, cf. Section 4.3. We randomly sampled 20 graphs from the dataset to
be queries and then used the cover tree as well as the vp-tree as the underlying
metric index to compare them. Figure 5 shows the time needed for answering
20 kNN queries, each with k ∈ {1, . . . , 5} (excluding preprocessing). Since in the



12 F. Bause, D. B. Blumenthal, E. Schubert, N. M. Kriege

1 2 3 4 5
0

0.5

1

1.5

2

T
im

e
in

se
co
n
d
s

Total query time

1 2 3 4 5
0

1

2

3

Total query time

1 2 3 4 5
0

0.5

1

1.5

Total query time

1 2 3 4 5
0

1

2

3

k

T
im

e
in

se
co
n
d
s

1 2 3 4 5
0

2

4

6

k

1 2 3 4 5
0

10

20

30

k

PTC FM MUTAG Letter-low

Letter-high Fingerprint Cuneiform

No index vp-tree Cover tree

Fig. 5: Runtime comparison for answering 20 kNN queries using Branch and
k ∈ {1, . . . , 5}.

optimal multi-step k-nearest neighbor search, the candidates have to be verified
during search, before further candidates are explored, the runtime also includes
the time needed for verification. It can be seen that, again both index structures
provide the same runtime benefit. Taking into account the preprocessing time
however, the cover tree has a clear advantage over the vp-tree.

Q5: Similarity search in a large dataset. We investigate the scalability of our
approach on the dataset QM9 with 129 433 graphs with attributed vertices and
edges. The results shown in Figure 6 confirm the high preprocessing time of the
vp-tree compared to the cover tree. Both index methods achieve a significant
advantage over a linear scan in filtering by reducing the running time by several
orders of magnitude depending on the selectivity of the query.

6 Conclusions

We have shown that the recently studied lower and upper bounds on the graph
edit distance can be employed to realize scalable graph similarity search in a
filter-verification framework accelerated by metric indexing. Our approach sup-
ports attributed graphs without restrictions of edit costs. For the extensively
studied special case of graphs with discrete labels and uniform edit costs, our
approach was shown experimentally to outperform the state-of-the-art methods.

There are several directions of future work to improve the filter-verification
pipeline further. Our tightest upper bound was obtained via local search using a
straightforward approach. More sophisticated techniques have been proposed re-
cently [6] and can be incorporated to reduce verification. For the verification step,
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Fig. 6: Runtime comparison for preprocessing and filtering 100 range queries in
the dataset QM9 using Branch and thresholds 1 to 5.

tailored methods that benefit from the already obtained assignment or the upper
and lower bound can be developed. A well-known phenomenon of metric trees
is that their effectivity decreases with increasing intrinsic dimensionality of the
data/distance. Therefore, a suitable lower bound should not only be efficiently
computed and tight, but ideally also have a low intrinsic dimensionality. Study-
ing this property for the available lower bounds remains future work. Finally,
recent advances in median graph computation [3] suggest to compute routing
objects instead of using database graphs. An experimental comparison to such
orthogonal approaches remains future work.
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