
Handling Class Imbalance in k-Nearest Neighbor
Classification by Balancing Prior Probabilities

Jonatan Møller Nuutinen Gøttcke1[0000−0003−4104−0298] and Arthur
Zimek1[0000−0001−7713−4208]

Institute of Mathematics and Computer Science,
University of Southern Denmark, Odense, Denmark

{goettcke,zimek}@imada.sdu.dk

Abstract. It is well known that recall rather than precision is the per-
formance measure to optimize in imbalanced classification problems, yet
most existing methods that adjust for class imbalance do not partic-
ularly address the optimization of recall. Here we propose an elegant
and straightforward variation of the k-nearest neighbor classifier to bal-
ance imbalanced classification problems internally in a probabilistic in-
terpretation and show how this relates to the optimization of the recall.
We evaluate this novel method against popular k-nearest neighbor-based
class imbalance handling algorithms and compare them to general over-
sampling and undersampling techniques. We demonstrate that the per-
formance of the proposed method is on par with SMOTE yet our method
is much simpler and outperforms several competitors over a large selec-
tion of real-world and synthetic datasets and parameter choices while
having the same complexity as the regular k-nearest neighbor classifier.

Keywords: Class imbalance · Bayesian learning · k-nearest neighbor
classification

1 Introduction

In classification problems, skewed class distributions often result in poor accu-
racy when predicting instances of the minority classes. The problem is common
and found in substantially different areas such as fraud detection, propaganda
detection, and medical diagnosis. The typical class imbalance problem is often
presented as a dichotomous classification problem, where it is crucial that the
minority class is predicted correctly. A common example would be data about a
rare disease, where the available training data contains many instances without
the disease, and only few with the disease. The majority class dominates the
training and potentially also the evaluation, if done naively. The imbalance ra-
tio, IR, captures the severity of a problem by the ratio of the size of the (largest)
majority class (cmaj) over the size of the (smallest) minority class (cmin):

IR =
|cmaj |
|cmin |

(1)

2 J. Goettcke, A. Zimek

Of course, the problem can vary in complexity by having multiple minority
classes with different degrees of importance for each of the minority classes. The
problem also becomes more difficult when the imbalance ratio (IR) is increased.
In the literature, a value of IR > 3.5 is seen as signalling a high degree of
imbalance in a dataset [26].

Besides the absolute value of IR, we can also distinguish absolute imbalance
and relative imbalance. Absolute imbalance describes the case where there is a
small absolute amount of minority instances. For example, if there are 5 instances
in the minority class and 95 in the majority class, we get an IR of 19. Relative
imbalance simply means that the IR is large, e.g., if there are 5000 instances in
the minority class and 95000 in the majority. This would also result in an IR
of 19. However, a re-sampling strategy should most likely be different for these
two cases. Absolute and relative imbalance has been discussed in more detail by
Bellinger et al. [3].

When studying the performance of algorithms on imbalanced classification
problems, it is a fallacy to just report the accuracy, error rate, precision, or f1
measure. The ROC curve, although inherently accounting for imbalance, comes
with its own problems as well [8, 13].

The precision measure reports, for one class against all other classes, the
number of true positives (TP) divided by the false positives (FP) plus the true
positives, i.e., TP

FP+TP . In class imbalanced problems, precision is not a viable
measure since the majority classes will have relatively few false positives no
matter how many of the minority points they predict as majority points. Exam-
ples for the minority classes on the other hand are rarely mistaken for majority
points. The true positives will thus typically be divided by almost the same num-
ber, because there are no or few false positives, which leads to a high precision.
The harmonic mean between precision and recall (f1) is also reported in some
studies [10], but since precision is not a meaningful measure in class imbalanced
problems its presence in the f1 measure only hides the algorithms’ performance
in terms of recall.

Some argue [2, 16] that accuracy and error rate are strongly biased to favor
the majority class. The problem with accuracy and error rate is obvious when
the class imbalances are extreme. If in a binary classification problem 99.9%
belongs to the minority class, and only 0.01% belongs to the minority, then if we
completely fail to predict the minority class the classifier still has an accuracy
of 99.9%. Thus the G-mean score is a popular measure [4, 16, 18], that is the

geometric mean over recall: (
∏n

i=1 ri)
1
n = n

√
r1 · r2 · . . . · rn, where ri is the recall

for class ci.

This results in a quality measure that heavily penalizes a low recall for any
of the classes, reflecting the algorithm’s inability to hypothesize that point x
belongs to the minority class. Failing completely on one class results in a zero
value for the overall G-mean score. We therefore argue for the sensibility in
reporting the macro-averaged recall in addition to the G-mean score. For further
discussion on performance assessment of imbalanced classification problems see
the work by Japkowicz [16].

Handling Class Imbalance in k-Nearest Neighbor Classification 3

Considering the appropriateness of recall when working with imbalanced clas-
sification problems, in this paper we introduce a variant of the k-nearest neighbor
classifier that balances the prior class probabilities. We show how this effectively
resembles using a local recall as a classification rule, while the standard k-nearest
neighbor classifier effectively uses the local precision as a decision criterion.

The remainder of the paper is organized as follows. In Section 2, we discuss
related work. In Section 3 we introduce our method and discuss some properties.
In Section 4 we perform an experimental evaluation of our method against state-
of-the-art competitors. In Section 5 we summarize and give perspectives for
future work.

2 Related work

There exist many approaches to handling imbalanced classification problems.
The approaches can be divided into three main categories, namely external,
internal, and cost-sensitive approaches.

2.1 External approaches

External approaches alter the dataset a classifier is trained on. The alterations
are typically different re-sampling techniques such as majority undersampling,
minority oversampling, or a combination of both. In oversampling, the minority
class domain is extended by adding real points or synthetic points to the ex-
isting training data. The simplest such approaches are Random Undersampling
(RUS) [15, 25] which randomly removes points from the majority class until
a uniform class distribution is reached. A similar oversampling method exists,
namely random oversampling (ROS) [15], which picks random real points from
the minority classes and oversamples these until a uniform class distribution is
reached.

SMOTE [6] is likely the most popular oversampling technique. It adds ad-
ditional data points to the dataset by inserting new synthetic samples within
the convex hull of the minority class. The synthetic sample is positioned on the
straight line between two minority points, i.e., a + (b − a) · α, where a is the
feature vector of the point under consideration, b is a feature vector of a random
instance of the nearest neighbors and α ∈ [0, 1] is a random value determining
where on the line the point should be positioned. The algorithm iterates through
all data points of the minority class and oversamples each point by finding the
k nearest neighbors and picking n randomly, where n is the oversample rate.
A data point is inserted at a random point on each line between these n sets
of two. Chawla and Nitesh demonstrated that SMOTE improved performance
over random oversampling and that SMOTE results in reduced decision tree
sizes, when used in combination with C4.5 [24]. A plethora of slightly modified
SMOTE variations have been developed since the original. Noteworthy mentions
are Borderline SMOTE [12] and ADASYN [14].

4 J. Goettcke, A. Zimek

2.2 Internal approaches and modifications of the kNN classifier

Internal approaches modify an existing classifier to account for the class im-
balance. Over the past two decades, several attempts have been proposed to
modify specifically the kNN classifier to account for an imbalanced class distri-
bution. Song et al. [27] introduced IkNN, where they employ information about
the distance from a query point to its nearest neighbors to determine the most
informative nearest neighbors. Kriminger et al. [17] created a class imbalance
handling kNN variation which also works on imbalanced data streams. Liu and
Chawla [20] introduce a class confidence weighted kNN rule by employing Gaus-
sian mixture models, and Bayesian networks to estimate class weights.

Dubey and Pudi [10] claim to improve performance over these previous in-
ternal modifications. They modify the existing kNN algorithm to be sensitive to
class imbalance by observing the class distributions within the kNN hyperballs
of a subset of the neighbors’ neighbors. This information is used to determine if
the query point is a local minority given this new sense of locality and its new
prior probability distribution.

2.3 Cost-sensitive learning and k-nearest neighbors

A way of making an arbitrary classifier sensitive to the class imbalance problem
without modifying the dataset as done in the external approaches, is by employ-
ing cost-sensitive learning. In cost-sensitive learning each possible prediction is
associated with some misclassification cost. The goal is then to minimize the total
misclassification cost over the test dataset. Elkan [11] generalized cost-sensitive
learning to the goal of minimizing the conditional risk as:

R(x, ci) =
∑
j

Pr(cj |x)C(i, j) (2)

where x is an example, ci and cj class labels, and the C(i, j) entry in the cost
matrix is the cost of predicting class cj when the true class is ci. Picking the
prediction that minimizes the conditional risk leads to decisions that are not
necessarily the most probable outcome. Improving the sensitivity towards the
minority class in cost sensitive learning can be achieved by increasing the cost
of misclassifying minority instances. Domingos [9] proposed a method which can
make any classifier cost sensitive, by employing ensemble learning. Qin et al. [23]
and Zhang [28] proposed a cost-sensitive kNN classifier based directly on Elkan’s
formulation of conditional risk. The schema for their Direct-CS-kNN classifier is
given by

L(x, ci) =
∑
cj∈C

Pr(cj |x)C(i, j) (3)

The conditional risk is described as a loss function L(x, ci), describing the loss
of predicting class ci, given query point x:

h(x) = arg min
ci∈C

L(x, ci) (4)

Handling Class Imbalance in k-Nearest Neighbor Classification 5

If we alter Equation 3 to sum over the probabilities that it is not class cj multi-
plied by a cost of predicting class cj instead of predicting class ci, the weights can
become more understandable and we obtain some nice properties with respect
to the minimization:

h(x) = arg min
ci∈C

∑
cj∈C

1− Pr(cj |x)∑
c∈C 1− Pr(cc|x)

· C(i, j) (5)

The modification ensures several nice properties such as, if the cost matrix is
equal to the identity matrix C = I, then we get the conventional majority vote
kNN decision rule. If we use a diagonal matrix D with positive weights greater
than or equal to 1, then if we pick wi = 1

D(i,i) we obtain the basic weighted kNN

decision rule.

2.4 Summary

In summary, although various methods exist to adjust classifiers in general or the
kNN classifier in particular to imbalanced classification problems, none of these
methods tackles the particular problem of considering the recall as an important
objective of imbalanced classification. In the following, we introduce an elegant
and straightforward way to do so.

3 Class-balanced k-nearest neighbors classification

The kNN classifier is an instance-based learning method that classifies an in-
stance x from the input space by applying a decision rule to the set of k-nearest
neighbors of x in the training data space. The decision rule is conventionally the
majority vote, but could also be a weighted majority vote to handle a difference
in the importance of attributes or to give higher weight to closer neighbors. As
we have seen above, weights can also be associated with different class labels as
an approach to handle the class imbalance problem [10].

3.1 Basic weighted kNN

The most intuitive approach to handling the class imbalance problem is perhaps
to add importance to instances belonging to the minority classes. This can be
done with a modification of the decision rule by multiplying the observed number
of minority instances with a positive weight greater than 1, or the majority
instances with a weight between 0 and 1, or a combination of both. To ensure
the relative importance of each class is uniform despite accounting for different
proportions of the dataset, the weight could be defined as:

wi =
|{x|x ∈ cmaj}|
|{x|x ∈ ci}|

(6)

where cmaj is the majority class. This weighting scheme was generally proposed
by Japkowicz [15].

6 J. Goettcke, A. Zimek

3.2 Balancing a probabilistic k-nearest neighbor classifier

Choosing the class of the majority among the k nearest neighbors is from the
point of view of probabilistic learning equivalent to choosing the maximum a
posteriori (MAP) hypothesis when estimating the class probabilities for the dif-
ferent classes ci ∈ C, given the query instance:

hMAP(x) = arg max
ci∈C

Pr(ci|x) (7)

where we can find Pr(ci|x) by Bayes’ rule as:

Pr(ci|x) =
Pr(x|ci) · Pr(ci)∑m

j=1 Pr(x|cj) · Pr(cj)
(8)

From this it is obvious that the prior class probabilities have some influence
on the decision rule, and the core idea for our method is to not estimate these
prior probabilities from the training sample but to define them as required by
fairness. Intuitively, balancing an imbalanced classification problem means in
this perspective to require uniform prior class probabilities, i.e., the decision of
the classifier (Eq. 7) for m classes should use

Pr(ci|x) =
Pr(x|ci) · 1

m∑m
j=1 Pr(x|cj) · 1

m

(9)

in order to treat all classes fair in a balanced way.
Interestingly, this addresses, locally, the need for optimizing the recall instead

of the precision, as the decision rule turns out to be choosing the class that is
captured to the largest proportion among the k nearest neighbors:

Theorem 1. Given some query object x in a classification problem with a set C
of m classes, let ki be the number of instances among the k nearest neighbors of
x that belong to class ci, let ni be the number of instances that belong to class ci
overall (i.e., ni = |ci|). For the k nearest neighbor classifier, adjusting the prior
class probabilities such that all classes are equally likely, i.e., ∀i Pr(ci) = 1

m , is

equivalent to choosing arg maxci∈C

(
ki

ni

)
, which is the local recall for x.

Proof. The proxy for the probability Pr(x|ci) is the density estimation given by
the k nearest neighbors, conditional on class ci, that we can describe as

Pr(x|ci) ∝
ki

niV (x)
(10)

where V (x) is the volume, centered at x, required to capture k nearest neighbors
of x. We can therefore rewrite Equation 8 as follows:

Pr(ci|x) ∝
ki

niV (x) · Pr(ci)∑m
j=1

kj

njV (x) · Pr(cj)
(11)

Handling Class Imbalance in k-Nearest Neighbor Classification 7

Choosing equal prior class probabilities results in:

Pr(ci|x) ∝
ki

niV (x) ·
1
m∑m

j=1
kj

njV (x) ·
1
m

(12)

which simplifies to

Pr(ci|x) ∝
ki

ni∑m
j=1

kj

nj

(13)

where the denominator is obviously identical for all classes. We therefore have

arg max
ci∈C

Pr(ci|x) = arg max
ci∈C

(
ki
ni

)
(14)

ut

The novel decision rule described in Equation 9 has therefore a straightfor-
ward practical interpretation and is easy to compute. The decision rule deter-
mines how large a fraction of the points with a specific class label in the domain
is present in a given neighborhood query. Effectively, this decision rule adds a
variable, local neighborhood-dependent class weight.

3.3 On the difference between weighted kNN and adjustment of
prior class probabilities

In the following we show that the same effect of modifying the prior probabilities
in the probabilistic interpretation cannot, in general, be achieved by using any
weight in the basic weighted kNN approach discussed in Section 3.1.

Theorem 2. A probabilistic kNN classifier with uniform prior probabilities is
not equivalent to a class-based weighted kNN classifier.

Proof. A weighted version of the probabilistic interpretation of kNN, taking
Equation 11 as a starting point, can be formulated as:

wi · Pr(ci|x) = wi ·
ki

ni
· Pr(ci)∑m

j=1
kj

nj
Pr(cj)

(15)

However, unless the prior probabilities are equal for all classes, there is no pos-
sible choice of wi that also balances all Pr(cj) in the denominator. ut

Intuitively, our proposed method is effectively employing locally adaptive
weights, which is not possible to model with a weight- or cost-based approach.

In a polytomous and heavily imbalanced classification problem where the
largest majority class contains 1000 points, one of two minority classes, say c2,
contains 10 points, and the other minority class contains 50 points, a query with

8 J. Goettcke, A. Zimek

Table 1. Dataset information for the real datasets. Abbreviations: dimensionality
(Dim.), imbalance ratio (IR), number of classes (CL) and number of points (n)

Dataset n Dim IR Cl Dataset n Dim IR Cl
appendicitis 106 7 4.05 2 page-blocks 5472 10 175.46 5
balance 625 4 5.88 3 phoneme 5404 5 2.41 2
cleveland 297 13 12.31 5 satimage 6435 36 2.45 6
coil 2000 9822 85 15.76 2 spectfheart 267 44 3.85 2
dermatology 358 34 5.55 6 shuttle 58000 9 4558.60 7
ecoli 336 7 71.5 7 thyroid 7200 21 40.16 3
glass 214 9 8.44 6 titanic 2201 3 2.10 2
haberman 306 3 2.78 2 wine-red 1599 11 68.10 6
hayes roth 160 4 2.10 3 wine-white 4898 11 439.60 7
hepatitis 80 19 5.15 2 yeast 1484 8 92.60 10
marketing 6876 13 2.49 9 usps 1500 50 4.00 2
new thyroid 215 5 5.00 3

2 minority points will be weighted differently dependent on which of the classes
are present in the query:

Pr(c2|x1) =
2
10

2
10 + 1

1000 + 0
50

= 0.995, Pr(c2|x2) =
2
10

2
10 + 0

1000 + 1
50

= 0.909

This exemplifies how the weight for some class is dependent on the neighborhood
of the query point.

4 Experimental Evaluation

4.1 Datasets

The datasets have been picked from the Keel dataset repository [1], and the
USPS dataset is from Chapelle & Schölkopf [5]. The datasets were picked from
these repositories, based on their imbalance ratio (IR) which is larger than 2. All
datasets have numerical attributes. An overview on the used datasets is given in
Table 1.

4.2 Compared methods

We compare our method “k-Nearest Neighbors with Balanced Prior Proba-
bilities” (kNN-BPP) against representatives for the different categories of ap-
proaches, as discussed in Section 2. An overview is given in Table 2. As competi-
tors, we include the conventional kNN classifier as well as more complex kNN-
based algorithms that have been designed with the class imbalance problem in
mind. The algorithms are also evaluated against the most common re-sampling
strategies with a regular kNN-classifier. As can be seen in Table 2, several of the
algorithm implementations are currently not publicly available. The original au-
thors were contacted but did not provide the implementations. All implemented

Handling Class Imbalance in k-Nearest Neighbor Classification 9

Table 2. Compared methods

Method Short Name Impl. Source

k-Nearest Neighbors classifier [7] kNN Scikit-Learn [22]

Random undersampling [15,25] RUS Imblearn [19]

Synthetic Minority Oversampling Technique [6] SMOTE Imblearn [19]

Class Based Weighted k-Nearest Neighbor
over Imbalance Dataset [10]

CW-kNN

https://github.
com/Goettcke/kNN_
BPP

Direct Cost Sensitive kNN Classifier [23,28] Direct-CS-kNN
k-Nearest Neighbors

with Balanced Prior Probabilities
kNN-BPP

algorithms will be made available with this paper. The algorithms were writ-
ten following the requirements for Scikit-Learn implementations and written in
Python.

4.3 Parameter Selection

We evaluate the methods using stratified 10-fold cross-validation. The k-value
in these experiments varied for each dataset between 3 and 35.

For the Direct-CS-kNN classifier, a cost-matrix has to be defined. Since no
method to generate such a cost matrix was proposed in the original papers we
use the following cost-matrix: We construct an asymmetrical matrix that ensures
the cost of predicting class cj instead of ci is proportional to the imbalance ratio

between these two classes C(i, j) = |ci|
|cj | . Notice that, if class ci is larger than cj

then the weight is greater than 1 which can be interpreted as it being costly to
make this mistake. However, if ci is a minority class, then C(i, j) ∈ [0, 1]. This
can be interpreted as a discount to making this type of mistake.

For SMOTE the number of nearest neighbors to include in the oversampling
set was set to 6 as per the default in the Imblearn package. For random under-
sampling (RUS) and SMOTE, re-sampling was done to achieve uniform class
distributions.

4.4 Evaluation measures

We evaluate the methods in terms of recall, taking the geometric mean over the
classes (G-mean) and the macro average. We also tested precision, where all the
methods show only minor differences, thus these results are not included.

4.5 Results

Ranking distribution over datasets and parameter values As a first
overview we compare the methods performance as the average ranking for each

https://github.com/Goettcke/kNN_BPP
https://github.com/Goettcke/kNN_BPP
https://github.com/Goettcke/kNN_BPP

10 J. Goettcke, A. Zimek

5 10 15 20 25 30 35
2.0

2.5

3.0

3.5

4.0

4.5

5.0

kNN
kNN-BPP

SMOTE
RUS

CW-kNN
Direct-CS-kNN

(a) G-mean score
5 10 15 20 25 30 35

2.0

2.5

3.0

3.5

4.0

4.5

5.0

kNN
kNN-BPP

SMOTE
RUS

CW-kNN
Direct-CS-kNN

(b) Macro averaged recall

Fig. 1. Performance for k ∈ [3, 35] in terms of the mean rank over all datasets

choice of k over all datasets. The rankings over all tested values of k are shown
in Figure 1. Notice that a lower rank indicates better performance. The plots
show how the evaluated algorithms seem to form 3 groups. The first group with
the highest rank is the unmodified kNN algorithm. The second group contains
the modified kNN algorithms from [10] and [28] as well as random undersam-
pling [15]. In the third and best performing group we have SMOTE [6] and the
proposed kNN-BPP method.

Analysis of statistical performance differences We performed a statistical
analysis of the ranking differences for k = 10, 20, 30. The results are shown
in critical difference plots in Figure 2. The plots show the average ranking of
methods over all datasets together with a bar connecting methods that are not
performing differently with statistical significance. We see our method on top
or, in one case, second to SMOTE, although their performance is only different
with statistical significance from some other methods in most cases. The classic,
unchanged kNN classifier is typically worst, and several of the improved versions
are not better with statistical significance. kNN-BPP is significantly better than
the unchanged kNN classifier in all tests and better than RUS and CW-kNN in
several, also in cases where SMOTE is not significantly better. In summary, the
critical difference (CD) plots indicate that kNN-BPP performs as well or slightly
better than a non-trivial oversampling technique, but without adding runtime
to the original k-nearest neighbor classifier.

Distribution of raw performance To complement the picture, we also show
the distribution of performance in terms of raw recall (G-mean and macro av-
erage) values over the datasets for k = 10, 20, 30 in Figure 3 (here higher values
are better). We see that the distributions overlap strongly, but we can identify
a tendency of SMOTE and our method to perform better than others.

Handling Class Imbalance in k-Nearest Neighbor Classification 11

2 3 4 5 6

CD

kNN−BPP
SMOTE

Direct−CS−kNN

RUS
CW−kNN
kNN

(a) G-mean k = 10

2 3 4 5

CD

kNN−BPP
SMOTE

Direct−CS−kNN

CW−kNN
RUS
kNN

(b) Macro averaged recall k = 10

2 3 4 5

CD

SMOTE
kNN−BPP

Direct−CS−kNN

RUS
CW−kNN
kNN

(c) G-mean k = 20

2 3 4 5

CD

kNN−BPP
SMOTE

Direct−CS−kNN

CW−kNN
RUS
kNN

(d) Macro averaged recall k = 20

2 3 4 5 6

CD

kNN−BPP
SMOTE

Direct−CS−kNN

RUS
CW−kNN
kNN

(e) G-mean k = 30

2 3 4 5

CD

kNN−BPP
SMOTE

Direct−CS−kNN

CW−kNN
RUS
kNN

(f) Macro averaged recall k = 30

Fig. 2. Statistical assessment of performance differences: critical difference plots

0.0 0.2 0.4 0.6 0.8 1.0
Gmean score

kNN
RUS

SMOTE
CW-kNN

Direct-CS-kNN
kNN-BPP

(a) G-mean k = 10
0.0 0.2 0.4 0.6 0.8 1.0

Macro avg. recall

kNN
RUS

SMOTE
CW-kNN

Direct-CS-kNN
kNN-BPP

(b) Macro averaged recall k = 10

0.0 0.2 0.4 0.6 0.8 1.0
Gmean score

kNN
RUS

SMOTE
CW-kNN

Direct-CS-kNN
kNN-BPP

(c) G-mean k = 20
0.0 0.2 0.4 0.6 0.8 1.0

Macro avg. recall

kNN
RUS

SMOTE
CW-kNN

Direct-CS-kNN
kNN-BPP

(d) Macro averaged recall k = 20

0.0 0.2 0.4 0.6 0.8 1.0
Gmean score

kNN
RUS

SMOTE
CW-kNN

Direct-CS-kNN
kNN-BPP

(e) G-mean k = 30
0.0 0.2 0.4 0.6 0.8 1.0

Macro avg. recall

kNN
RUS

SMOTE
CW-kNN

Direct-CS-kNN
kNN-BPP

(f) Macro averaged recall k = 30

Fig. 3. Distribution of recall (G-mean, macro average) over the datasets

12 J. Goettcke, A. Zimek

1 2 3

CD

kNN−CIP
SMOTE

kNN

(a) G-mean

1 2 3

CD

kNN−CIP
SMOTE

kNN

(b) Macro averaged recall

Fig. 4. Critical difference plots showing the significant disadvantage of SMOTE on
multimodal minority class datasets in terms of G-mean and macro averaged recall

In the box plots over macro-averaged recall in Figure 3, we observe that the
result distribution of kNN, CW-kNN and kNN-BPP are the most stable when
changing k, but the median performance of kNN-BPP is also overall the highest
and on par with SMOTE. In the box plots showing the result distributions over
the datasets in terms of G-mean score in Figure 3(e), we observe that kNN-BPP is
the only internal modification of kNN that consistently has a first quartile above
0. Conventional kNN is the most stable algorithm but the worst performer in
terms of the distribution over G-mean score. We also observe that SMOTE and
kNN-BPP are the best performers and almost as stable as kNN.

Disadvantage of oversampling Although our method is on par with the more
complex oversampling method SMOTE, oversampling also has clear disadvan-
tages. Firstly, adding synthetic points to the minority class increases the number
of points in the dataset, which obviously increases the runtime. Secondly, they
assume that the minority class follows some compact distribution. In the case of
SMOTE it depends on the k value chosen, a larger k makes the assumed distri-
bution approach a Gaussian distribution. To illustrate this problem we generated
one hundred simple binary classification problems consisting of a multimodal mi-
nority class and a unimodal majority class. Both classes only span 2-dimensions
and both the majority class mode and the minority class modes follow Gaussian
distributions in both dimensions. The minority class modes are positioned on
opposite sides of the majority class mode.

On these datasets we study the performance differences of regular kNN,
SMOTE, and kNN-BPP. The problem for SMOTE is that it inserts harmful
SMOTE instances between the two modes [4] since the convex hull defined by
the minority class covers a large area of the majority class space.

In Figure 4 we see the statistical evaluation of the performance differences
of oversampling in combination with majority voting kNN, compared to our
method kNN-BPP, and the regular kNN classifier as a baseline. In all tests, k
was set equal to 10, and 10-fold stratified cross-validation was used. For the
re-sampling strategies the default parameters were used which ensures a uni-
form class distribution. In this simple test, kNN-BPP is significantly better than
SMOTE. The reason behind the clear win is that the number of instances in the
two modes is approximately the same, which means that oversampling within
one mode by inserting a point on the vector between two of the minority points

Handling Class Imbalance in k-Nearest Neighbor Classification 13

is approximately as likely as inserting a harmful SMOTE instance between the
two modes. This is of course dependent on which points are picked at random
so if SMOTE is extremely lucky it can perform better than kNN-BPP. However
repeating this experiment a hundred times shows that this is typically not the
case, hence the significant difference.

5 Conclusion

In this paper we addressed the importance of considering the recall when tackling
imbalanced classification problems. We developed an elegant and straightforward
kNN classifier, kNN-BPP, that balances prior class probabilities and thus treats
imbalanced classes in a fair manner. The proposed kNN-BPP algorithm shows
performance on par with a popular oversampler applied to the datasets in com-
bination with the conventional kNN-algorithm for all measured k-values, while
having the same computational complexity as regular kNN. The algorithm’s dif-
ference from a weighted kNN-algorithm has been shown. kNN-BPP’s advantage
over other recent internal modifications of kNN over a wide set of k-values has
been established.

For future work it could be interesting to investigate this idea for other classi-
fiers that are amenable to a Bayesian probabilistic interpretation, and to perform
case studies in application scenarios requiring special attention to fairness and
bias [21].

References

1. Alcalá-Fdez, J., Fernández, A., Luengo, J., Derrac, J., Garćıa, S.: KEEL data-
mining software tool: Data set repository, integration of algorithms and experi-
mental analysis framework. J. Multiple Valued Log. Soft Comput. 17(2-3), 255–287
(2011)

2. Batista, G.E.A.P.A., Prati, R.C., Monard, M.C.: A study of the behavior of several
methods for balancing machine learning training data. SIGKDD Explor. 6(1), 20–
29 (2004)

3. Bellinger, C., Drummond, C., Japkowicz, N.: Beyond the boundaries of SMOTE
- A framework for manifold-based synthetically oversampling. In: ECML/PKDD
(1). pp. 248–263. Springer (2016)

4. Bellinger, C., Sharma, S., Japkowicz, N., Zäıane, O.R.: Framework for extreme
imbalance classification: SWIM - sampling with the majority class. Knowl. Inf.
Syst. 62(3), 841–866 (2020)

5. Chapelle, O., Schölkopf, B., Zien, A.: Introduction to semi-supervised learning. In:
Semi-Supervised Learning, pp. 1–12. The MIT Press (2006)

6. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic
minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

7. Cover, T.M., Hart, P.E.: Nearest neighbor pattern classification. IEEE Trans. Inf.
Theory 13(1), 21–27 (1967)

8. Davis, J., Goadrich, M.: The relationship between precision-recall and ROC
curves. In: Cohen, W.W., Moore, A.W. (eds.) Proc. ICML. pp. 233–240 (2006).
https://doi.org/10.1145/1143844.1143874

https://doi.org/10.1145/1143844.1143874

14 J. Goettcke, A. Zimek

9. Domingos, P.M.: Metacost: A general method for making classifiers cost-sensitive.
In: KDD. pp. 155–164. ACM (1999)

10. Dubey, H., Pudi, V.: Class based weighted k-nearest neighbor over imbalance
dataset. In: PAKDD (2). pp. 305–316. Springer (2013)

11. Elkan, C.: The foundations of cost-sensitive learning. In: IJCAI. pp. 973–978. Mor-
gan Kaufmann (2001)

12. Han, H., Wang, W., Mao, B.: Borderline-SMOTE: A new over-sampling method
in imbalanced data sets learning. In: ICIC (1). pp. 878–887. Springer (2005)

13. Hand, D.J.: Measuring classifier performance: a coherent alternative to
the area under the ROC curve. Mach. Learn. 77(1), 103–123 (2009).
https://doi.org/10.1007/s10994-009-5119-5

14. He, H., Bai, Y., Garcia, E.A., Li, S.: ADASYN: adaptive synthetic sampling ap-
proach for imbalanced learning. In: IJCNN. pp. 1322–1328. IEEE (2008)

15. Japkowicz, N.: The class imbalance problem: Significance and strategies. In: Proc.
of the Int’l Conf. on Artificial Intelligence. vol. 56 (2000)

16. Japkowicz, N.: Assessment metrics for imbalanced learning. In: He, H., Ma, Y.
(eds.) Imbalanced Learning: Foundations, algorithms, and applications, chap. 8,
pp. 187–206. John Wiley & Sons (2013)

17. Kriminger, E., Pŕıncipe, J.C., Lakshminarayan, C.: Nearest neighbor distributions
for imbalanced classification. In: IJCNN. pp. 1–5. IEEE (2012)

18. Kubat, M., Matwin, S.: Addressing the curse of imbalanced training sets: One-sided
selection. In: ICML. pp. 179–186. Morgan Kaufmann (1997)

19. Lemaitre, G., Nogueira, F., Aridas, C.K.: Imbalanced-learn: A python toolbox to
tackle the curse of imbalanced datasets in machine learning. J. Mach. Learn. Res.
18, 17:1–17:5 (2017)

20. Liu, W., Chawla, S.: Class confidence weighted knn algorithms for imbalanced data
sets. In: PAKDD (2). pp. 345–356. Springer (2011)

21. Ntoutsi, E., Fafalios, P., Gadiraju, U., Iosifidis, V., Nejdl, W., Vidal, M., Rug-
gieri, S., Turini, F., Papadopoulos, S., Krasanakis, E., Kompatsiaris, I., Kinder-
Kurlanda, K., Wagner, C., Karimi, F., Fernández, M., Alani, H., Berendt, B.,
Kruegel, T., Heinze, C., Broelemann, K., Kasneci, G., Tiropanis, T., Staab, S.:
Bias in data-driven artificial intelligence systems - an introductory survey. Wiley
Interdiscip. Rev. Data Min. Knowl. Discov. 10(3) (2020)

22. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., VanderPlas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

23. Qin, Z., Wang, A.T., Zhang, C., Zhang, S.: Cost-sensitive classification with k-
nearest neighbors. In: KSEM. pp. 112–131. Springer (2013)

24. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)
25. Rodieck, R.W.: The density recovery profile: a method for the analysis of points

in the plane applicable to retinal studies. Visual neuroscience 6 2, 95–111 (1991)
26. Siddappa, N.G., Kampalappa, T.: Imbalance data classification using local maha-

lanobis distance learning based on nearest neighbor. SN Comput. Sci. 1(2), 76
(2020)

27. Song, Y., Huang, J., Zhou, D., Zha, H., Giles, C.L.: IKNN: informative k-nearest
neighbor pattern classification. In: PKDD. pp. 248–264. Springer (2007)

28. Zhang, S.: Cost-sensitive KNN classification. Neurocomputing 391, 234–242 (2020)

https://doi.org/10.1007/s10994-009-5119-5

	Handling Class Imbalance in k-Nearest Neighbor Classification by Balancing Prior Probabilities

