
Accelerating Spherical k-Means?

Erich SchubertB[0000−0001−9143−4880], Andreas Lang[0000−0003−3212−5548], and
Gloria Feher[0000−0002−0859−2042]

TU Dortmund University, Dortmund, Germany
{erich.schubert,andreas.lang,gloria.feher}@tu-dortmund.de

Abstract. Spherical k-means is a widely used clustering algorithm for
sparse and high-dimensional data such as document vectors. While sev-
eral improvements and accelerations have been introduced for the orig-
inal k-means algorithm, not all easily translate to the spherical vari-
ant: Many acceleration techniques, such as the algorithms of Elkan and
Hamerly, rely on the triangle inequality of Euclidean distances. However,
spherical k-means uses cosine similarities instead of distances for compu-
tational efficiency. In this paper, we incorporate the Elkan and Hamerly
accelerations to the spherical k-means algorithm working directly with
the cosines instead of Euclidean distances to obtain a substantial speedup
and evaluate these spherical accelerations on real data.

1 Introduction

Clustering textual data is an important task in data science with applications
in areas like information retrieval, topic modeling, and knowledge organization.
Spherical k-means [8] is a widely used adaptation of the k-means clustering al-
gorithm to high-dimensional sparse data, such as document vectors where cosine
similarity is a popular choice. While it is generally used for clustering documents,
it has also been applied to medical images [2,20], multivariate species occurrence
data [14], and plant leaf images [1]. Because of its importance, several improve-
ments and extensions have been suggested. Many optimizations improve the ini-
tialization of k-means cluster centers, such as k-means++ [3] and k-means|| [5,6],
some of which have also been adapted to spherical k-means [11,22,19].

A key area of optimizations is focussed on the iterative optimization phase
of k-means. The standard algorithm computes the distance of every point to
every cluster in each iteration. Many of these computations are not necessary if
cluster centers have not moved much, and hence a lot of research has been on
how to avoid computing distances. The central work in this domain is the algo-
rithm of Elkan [10], which is the base for many other variants such as Hamerly’s
algorithm [12], but also recently the Exponion algorithm [21], the Shallot algo-
rithm [7], and the variants of Yu et al. [26], all of which rely on the Euclidean
triangle inequality to avoid distance computations.

? Part of the work on this paper has been supported by Deutsche Forschungsgemein-
schaft (DFG), project number 124020371, within the Collaborative Research Center
SFB 876 “Providing Information by Resource-Constrained Analysis”, project A2

2 E. Schubert et al.

This paper studies how to adapt such acceleration techniques to spherical k-
means, thus providing a more efficient approach for clustering text documents.

2 Foundations

Cosine similarity (which we will simply denote using sim in the following) is
commonly defined as the cosine of the angle θ between two vectors x and y:

sim(x,y) := simcosine(x,y) :=
〈x,y〉

‖x‖2 · ‖y‖2
=

∑
i xiyi√∑

i x
2
i ·
√∑

i y
2
i

= cos θ

In the following, we will only consider vectors normalized to unit length, i.e.,
with Euclidean norm ‖x‖2 =1. It is trivial to see that on such vectors, the cosine
similarity is simply the dot product. Consider the Euclidean distance of two
normalized vectors x and y, and expand using the binomial equations, we obtain:

dEuclidean(x,y) :=
√∑

i
(xi − yi)2 =

√∑
i
(x2i + y2i − 2xiyi) (1)

=

√
‖x‖2 + ‖y‖2 − 2 〈x,y〉 =

√
2− 2 · sim(x,y) (2)

where the last step relies on the vectors being normalized. Hence we have an
extremely close relationship between cosine similarity and squared Euclidean
distance on normalized vectors: sim(x,y) = 1− 1

2d
2
Euclidean(x,y).

k-means minimizes the squared Euclidean distances of points to their cluster
centers and hence can be used to maximize cosine similarities. Because the total
variance of a data set is constant, by minimizing the within-cluster squared
deviations, k-means also maximizes the between-cluster squared deviations. By
adapting this to cosine, we obtain clusters where objects in the same cluster
have to be more similar, while objects in different clusters are less similar.

Dhillon and Modha [8] popularized this idea as “spherical k-means” for clus-
tering text documents and exploited exactly the above relationship between the
squared Euclidean distance and cosine similarity. Only a tiny modification of
the standard k-means algorithm is necessary to obtain the desired results: the
arithmetic mean of a cluster usually does not have unit Euclidean length. Hence,
after recomputing the cluster mean, we normalize it accordingly. This constrains
the clustering to split the data at great circles (i.e., hyperplanes through the
origin), rather than arbitrary Voronoi cells as with regular k-means.

On text data, computing the cosine similarity is more efficient than comput-
ing Euclidean distance because of sparsity: rather than storing the vectors as a
long array of values, most of which are zeros, only the non-zero values can be
encoded as pairs (i, v) of an index i and a value v, and stored and kept in sorted
order. The dot product of two such vectors can then be efficiently computed by
a merge operation, where only those indexes i need to be considered that are
contained in both vectors, because in 〈x,y〉=

∑
i xiyi only those terms matter

where both xi and yi are not zero. A merge is most efficient if both vectors are
sparse, but even the dot product of a sparse and a dense vector is often much

Accelerating Spherical k-Means 3

faster than that of two dense vectors. While we can also compute Euclidean dis-
tance this way (using Eq. 2), this computation is prone to the numerical problem
called “catastrophic cancellation” for small distances that can be problematic in
clustering (see, e.g., [24,16]). Hence, working with cosines directly is preferable.

Instead of recomputing the distances to all cluster centers, the idea of algo-
rithms such as Elkan’s is to keep an upper bound on the distance to the nearest
cluster, and one or more lower bounds on the distances to the other centers.
Let dn be the distance to the nearest center, dn≤u an upper bound, ds the dis-
tance to the second nearest, and l≤ds a lower bound. If we have u≤l, then the
nearest cluster must still be the same since dn≤u≤l≤ds. Updating the distance
bounds uses the triangle inequality: if the nearest center µn has moved to µ′n,
then d(x, µ′n) ≤ d(x, µn) + d(µn, µ

′
n); and we hence can obtain an upper bound

u by adding every movement of a cluster center to the previous distance. Lower
bounds are obtained similarly: starting with the initial distance as the lower
bound, we subtract the distance the other center has moved to obtain a prov-
able new lower bound. While Elkan stored a lower bound for each cluster (which
needs O(N ·k) memory), Hamerly [12] reduced the memory usage by using just
one lower bound to the second nearest cluster, updated by the largest distance
moved. Additional pruning rules involve the pairwise distances of centers [10],
annuli around centers [21], and the relative movement of centers [26].

In the following, we describe how such accelerations can be applied to spher-
ical k-means, i.e., for cosine similarity and high-dimensional data.

3 Pruning with Cosine Similarity

Many acceleration techniques rely on the triangle inequality of the (non-squared)
Euclidean distance. Hence, we can adapt these methods by computing Euclidean
distances from our cosine similarities using dEuclidean(x,y)=

√
2− 2 · sim(x,y),

but we wanted to avoid this because of (i) the square root takes 10–50 CPU
cycles (depending on the exact CPU, precision, and input value) and (ii) the risk
of numerical instability because of catastrophic cancellation. Hence we develop
techniques that directly use similarities instead of distances, yet allow a similar
pruning to these (very successful) acceleration techniques of regular k-means.

The arc length (i.e., the angle θ itself, rather than the cosine of the angle)
satisfies the triangle inequality and hence we could use

sim(x,y) ≥ cos(arccos(sim(x, z)) + arccos(sim(z,y))) , (3)

but unforunately the trigonometric functions in here are even more expensive
(60–100 CPU cycles each). Schubert [23] recently proposed reformulations avoid-
ing the expensive trigonometric functions (but still using the square root):

sim(x,y) ≥ sim(x, z) · sim(z,y)−
√

(1− sim(x, z)2) · (1− sim(z,y)2) (4)

sim(x,y) ≤ sim(x, z) · sim(z,y) +
√

(1− sim(x, z)2) · (1− sim(z,y)2) (5)

In this paper, we explain how to integrate these triangle inequalities into spher-
ical k-means, and discuss an easily overlooked pitfall therein.

4 E. Schubert et al.

4 Upper and Lower Bounds

In the following, we orient ourselves on the very concise presentation and nota-
tion of Hamerly [12] as well as Newling and Fleuret [21], except that we swap
the names of u and l, because switching from distance to similarity requires us
to swap the roles of upper and lower bounds. We will assume that all points are
normalized to unit length, and hence sim(x,y) = 〈x,y〉 = xT·y.

The algorithms we discuss will employ upper and lower bounds for the simi-
larities of each sample x(i) to the cluster centers c(j). l(i) is a lower bound for
the similarity to the current cluster a(i), u(i, j) are upper bounds on the simi-
larity of each point to each cluster center, respectively u(i) is an upper bound
on the similarity to all other cluster centers (u(i, j) and u(i) are used in different
variants, not at the same time). These bounds are maintained to satisfy:

l(i) ≤ 〈x(i), c(a(i))〉 u(i, j) ≥ 〈x(i), c(j)〉 u(i) ≥ max
j 6=a(i)

〈x(i), c(j)〉

The central idea of all the discussed variants is that if we have l(i)≥u(i, j), then
〈x(i), c(a(i))〉≥l(i)≥u(i, j)≥〈x(i), c(j)〉 implies that the current cluster assign-
ment of object x(i) is optimal, and we do not need to recompute the similarities.

The bounds l(i) and u(i, j), can be maintained using above triangle inequality
if we know how much the cluster centers c(j) moved from their previous loca-
tion c′(j). Let p(j):= 〈c(j), c′(j)〉 denote this similarity. Based on the triangle
inequalities Eq. 4 and Eq. 5, we obtain the following bound update equations:

l(i)← l(i) · p(a(i))−
√

(1− l(i)2) · (1− p(a(i))2) (6)

u(i, j)← u(i, j) · p(j) +
√

(1− u(i, j)2) · (1− p(j)2) (7)

5 Accelerated Spherical k-Means

The algorithms discussed here all follow the outline of the standard k-means
algorithm of alternating optimization. During initialization, all data samples
x(i) are normalized to have length ‖x(i)‖=1. In the first step, all objects are
reassigned to the nearest cluster, in the second step, the cluster center is op-
timized. However, we switch the notation from distance to similarity. Let the
variable a(i) denote the current cluster assignment of sample x(i), and denote
the current cluster centers using c(j), the two steps can be written as:

a(i)← arg maxj 〈x(i), c(j)〉 i ∈ 1..N

c(j)←
∑

i|a(i)=j x(i)∥∥∑
i|a(i)=j x(i)

∥∥ j ∈ 1..k

When computing a(i) we maximize the cosine similarity instead of the squared
Euclidean distance in regular k-means. For c(j), note that the denominator is
different here, as we want to have ‖c(j)‖=1 for all j. We hence do not need to
compute the arithmetic mean, but we can scale the sum directly to length 1.

Accelerating Spherical k-Means 5

There are several optimizations we can do for the baseline algorithm that
make a difference: (i) By normalizing the vectors, we do not have to take the
vector lengths of x(i) into account when updating c(j), and by also normalizing
the c(j) we can use the dot product when computing a(i). (ii) Both the dot
product as well as the sum operation when computing c(j) can be optimized for
sparse data. (iii) Instead of recomputing c(j) each time, it is better to store the
sums before normalization and update them when a cluster assignment changes.

5.1 Spherical Simplified Elkan’s Algorithm

As the name suggests, this algorithm is a simplified version of Elkan’s approach,
introduced by Newling and Fleuret [21]. As it uses a subset of the pruning rules,
we introduce it before Elkan’s full algorithm. Both are presented directly in the
adaptation for spherical k-means.

Simplified Elkan uses the test u(i, j)≤l(i) to skip computing the similarity be-
tween x(i) and c(j) when it is not necessary. If this test fails, l(i)←〈x(i), c(a(i))〉
is updated first (as the current assignment is clearly the best guess), and only
if the condition still is violated, u(i, j)←〈x(i), c(j)〉 is computed next, and the
point is reassigned if necessary (updating l(i) and a(i) then).

5.2 Spherical Elkan’s Algorithm

Elkan’s algorithm [10] uses additional tests based on the pairwise distance of cen-
ters, respectively pairwise cluster similarities here. The idea is that cluster centers
are supposedly well separated, whereas points are close to their nearest cluster,
and we can use half the distance between two centers as a threshold. We sim-
plify the computation of half of the angle per cos(1

2 arccos(x))=
√

(x+1)/2. Let

cc(i, j):=
√

(〈c(i), c(j)〉+1)/2 be this lower bound (cc for center-center bounds,
as in [21]). Let s(i):= maxj 6=i cc(i, j) denote the maximum such bound for each i.

Suppose that cc(a(i), j) ≤ l(i) and l(i) ≥ 0, then 〈c(i), c(j)〉 ≤ 2l(i)2 − 1. We
can then use Eq. 5 to bound the distance to another cluster c(j) 6= c(a(i)) per

〈x(i), c(j)〉 ≤ 〈x(i), c(a(i))〉 · 〈c(a(i)), c(j)〉

+
√

(1−〈x(i), c(a(i))〉2) · (1−〈c(a(i)), c(j)〉2)

≤ l(i)(2l(i)2 − 1) +
√

(1−l(i)2) · (1−(2l(i)2 − 1)2)

= 2l(i)3 − l(i) +
√

(1−l(i)2) · 4l(i)2(1−l(i)2)

= 2l(i)3 − l(i) + 2l(i)(1−l(i)2) = l(i) ,

and hence do not have to consider other cluster centers c(j) if cc(a(i), j) ≤ l(i).
Because s(i) is the maximum of these values, we can skip iterating over the
means if s(i) ≤ l(i) altogether. While these additional tests are fairly cheap to
compute, they were found to not always be effective by Newling and Fleuret [21]
(who, hence, suggested the simplified variant discussed in the previous section).

For spherical k-means clustering, these bounds may not be very effective be-
cause of the high dimensionality. Using these bounds adds k · (k− 1)/2 = O(k2)

6 E. Schubert et al.

similarity computations to each iteration. Furthermore, the necessary compu-
tations can become more expensive because the centers are best stored using
dense vectors because (i) we aggregate many vectors into each center, and only
attributes zero in all of the assigned vectors will be zero in the resulting center,
i.e., the sparsity decreases often to the point where a dense representation is
more compact, and (ii) the efficient sparse data structures we use for the x(i)
are not well suited for adding and removing attributes. We could aggregate into
a dense vector and convert it to a sparse representation when normalizing the
center, but the resulting vectors will still often be too dense to be efficient.

5.3 Spherical Hamerly’s Algorithm

Where Elkan’s algorithm used one upper bound for each cluster, Hamerly [12]
only uses a single bound for all clusters. This does not only saves memory (for
large k, memory consumption of Elkan’s algorithm can be an issue) but updating
the N ·k bounds each iteration even if the clusters change only very little takes a
considerable amount of time. Hamerly’s idea is to make a worst-case assumption,
where we use the distance to the second nearest center as the initial bound, and
update it based on the largest cluster movement (of all clusters, except the one
currently assigned to). Because of this, the bound will become loose much faster,
and hence we need to recompute more often (and then we need to recompute
the distances to all clusters). Because of this, it is hard to predict which algo-
rithm works better, we are trading reduced memory and fewer bound updates
against additional distance computations. Nevertheless, many later works have
confirmed that it is often favorable to only keep one bound.

At first, adapting Hamerly to cosine similarity appears to be straightforward.
To obtain the lowest upper bound per object u(i)≤minj 6=a(i) u(i, j), we would
compute the smallest similarity of a cluster center to its previous location (as
well as the second smallest, in case the point is currently assigned to that center),
then use Eq. 7 with p′(i):= minj 6=i p(j) (which is either the smallest or the second
smallest p(j)). Most of the time this is fine, but there is a subtly hidden catch
here because of the underlying non-monotone trigonometric functions.

Recall the update equation (7), rewritten to u(i) instead of u(i, j) already:

u(i)← u(i) · p(j) +
√

(1− u(i)2) · (1− p(j)2)

This equation is not necessarily minimized by the smallest p(j), because of the
square root term. For large u(i) (e.g., 1), the result will be determined by the
first term, and a smaller p(j) is what is needed. But for small u(i) (e.g., 0), the
second term becomes influential, and a larger p(j) causes a smaller bound. This
is because we are working with the cosines cos θ, not the angles θ themselves.
Unfortunately, this depends on the previous value of u(i), and we probably
cannot use just one p(j) for all points.

One option would be to use both the minimum p′(i):= minj 6=i p(j) and the
maximum p′′(i):= maxj 6=i p(j) to update the bound with:

(7) ≤ u(i) · p′′(a(i)) +
√

(1− u(i)2) · (1− p′(a(i))2) . (8)

Accelerating Spherical k-Means 7

Because p′′(j)→ 1 as the algorithm converges, we may omit this term entirely:

(8) ≤ u(i) +
√

(1− u(i)2) · (1− p′(a(i))2) (9)

This has almost identical pruning power once p′′(j) becomes large enough in
later iterations. As we can precompute (1− p′(j)) for all j, this is quite efficient.
We cannot rule out that a tighter and computationally efficient bound exists.

If the condition l(i)≥u(i) is violated, first l(i) is made tight again, and if
it still is violated, all remaining similarities are computed to update u(i), or to
potentially obtain a new cluster assignment (updating a(i), l(i), and u(i)).

5.4 Spherical Simplified Hamerly’s Algorithm

Hamerly’s algorithm contains a bounds test similar to Elkan’s algorithm, but
using only the distance of each center to its nearest neighbor center instead of
keeping all pairwise center distances, i.e., only the threshold s(i):= maxj 6=i cc(i, j)
to prune objects with l(i)≥s(a(i)). We also consider a “simplified” variant of
Hamerly’s algorithm in our experiments with this bound check removed for the
same reasons as discussed with Elkan’s algorithm.

5.5 Further k-Means Variants

An obvious candidate to extend this work is Yin-Yang k-means [9], which groups
the cluster centers and uses one bound for each group. This is a compromise
between Elkan’s and Hamerly’s approaches, encompassing both as extreme cases
(k groups respectively one group). The results of this paper will trivially transfer
to this method. The Annulus algorithm [13] additionally uses the distance from
the origin for pruning. As all our data is normalized to unit length, this approach
clearly will not help for spherical k-means. The Exponion [21] and Shallot [7]
algorithms transfer this idea to using pairwise distances of cluster centers, where
our considerations may be applicable again.

5.6 Spherical k-means++

We experiment with the canonical adaptation of k-means++, using the analogy
with squared Euclidean distance. The first sample is chosen uniformly at random,
the remaining instances are sampled proportional to 1−maxc 〈x(i), c〉 which is
proportional to the squared Euclidean distance used by k-means++. This can
be done in O(nk) by caching the previous maximum, and the scalar product
is efficient for two sparse vectors. Endo and Miyamoto [11] prove theoretical
guarantees for a slight modification of spherical k-means using the dissimilarity
of α− 〈x,y〉 with α ≥ 3

2 to make it metric, and hence sample proportionally to
1−maxc 〈x(i), c〉. Pratap et al. [22] use the same trick to apply the AFK-MC2

algorithm [4] to spherical k-means-clustering.

8 E. Schubert et al.

Table 1: Data sets used in the experiments.
Data set Rows Columns Non-zero

DBLP Author-Conference 1842986 5236 0.056%
DBLP Conference-Author 5236 1842986 0.056%
DBLP Author-Venue 2722762 7192 0.099%
Simpsons Wiki 10126 12941 0.463%
20 Newsgroups 11314 101631 0.096%
Reuters RCV-1 804414 47236 0.160%

6 Experiments

We implemented our algorithms in the Java framework ELKI [25], which already
contained a large collection of k-means variants. By keeping the implementation
differences to a minimum, we try to make the benchmark experiments more
reliable (c.f., [15]), but the caveats of Java just-in-time compilation remain.

As our method is designed for sparse and high-dimensional data sets, we fo-
cus on textual and graph data as input. From the Digital Bibliography & Library
Project (DBLP, [18]) we extracted graphs that connect authors and conferences.
As this includes many authors with just a single paper, the data set is very
sparse. We can either use the authors as samples and the conferences as columns
or transposed. But because we use TF-IDF weighting afterward the semantics
will be different. Spherical k-means clustering has been used successfully for
community detection on such data sets (although we have to choose the number
of communities as a parameter). If we also include journals, the data set becomes
both larger and denser. A second data set was obtained from the Simpsons Fan-
dom Wiki,1 from which we extracted the text of around 10000 articles. The text
was tokenized and lemmatized, stop words were removed as well as infrequent
tokens (reducing the dimensionality from 42124 to 12941, and increasing the
density of non-zero values from 0.153% to 0.463%). This data set is more typ-
ical of a smaller domain-specific text corpus. The 20 Newsgroups data set is a
classic, popularized by the textbook of Tom Mitchell. We use a version available
via scikit-learn, with headers, footers, and quotes removed and vectorized using
the default settings (i.e., TF-IDF weighting). This is much more sparse than the
Simpsons wiki because of the poor input data quality (including Base64-encoded
attachments). After removing stop words and rare words as above, the density
would have been 0.317%, but we opted for the default scikit-learn version in-
stead. Reuters RCV-1 [17] is another classic text categorization benchmark, with
a density between the Simpsons and the 20news data.

We first discuss the algorithms on a single data set, with a single random
seed, averaged over 10 re-runs, to observe some characteristic behavior. The rea-
son that we do not average over different random initializations is that we want
to observe individual iterations of the algorithms, which depend on the initial-
ization. Fig. 1 shows the results on the DBLP author-conference data set with

1 https://simpsons.fandom.com/wiki/Simpsons_Wiki

https://simpsons.fandom.com/wiki/Simpsons_Wiki

Accelerating Spherical k-Means 9

(a) Similarity computations per iteration. (b) Number of similarity computations.

(c) Run time per iteration. (d) Cumulative run time.

Fig. 1: Distance computations and resulting run time for one initialization.

a large k=100. Considering only similarity computations (Fig. 1a and Fig. 1b),
both Elkan and Simplified Elkan shine (as expected) and use the fewest compu-
tations as they have the tightest bounds. There is next to no difference among
the two concerning the number of computations, but considering the run time
(Fig. 1c and Fig. 1d) the simplified variant is much worse. Perhaps unexpectedly,
this can be explained by the high k. The additional pruning rule of the full al-
gorithm allows skipping the loop over all clusters k, which would otherwise each
have to be checked against their bounds. The behavior of the Hamerly variants
is much more chaotic because it only depends on the cluster center that changed
most. Because of this, Hamerly computes many more similarities than Elkan
until the last few iterations. Nevertheless, its total run time is initially similar
to that of Simplified Elkan, and after around 30 iterations its run time per iter-
ation (c.f., Fig. 1c) becomes even lower than the full Elkan algorithm’s. These
savings arise once clusters do not change much anymore because only 2 bounds
need to be updated instead of k+1 bounds per iteration. For k=10 (not shown
in the figures), both Hamerly variants outperform Elkan, while for k=1000 even
Simplified Elkan clearly outperforms both Hamerly variants. Note that we used
random sampling as initialization. If we had known the optimal initial cluster
centers, all methods would have converged instantly.

Next, we compare the quality and run time of the initialization methods.
Table 2 shows the difference in the sum of variances, averaged over 10 random
seeds, compared to the uniform random initialization. It shows that the quality
difference of the converged solutions between all initialization methods is small

10 E. Schubert et al.

Table 2: Relative change in the objective function compared to the random
initialization (lower is better).
Data set Initialization k=2 k=10 k=20 k=50 k=100 k=200

Simpsons Wiki

Uniform 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
k-means++ α=1 -0.27% -0.16% -0.24% -0.07% -0.18% -0.07%
k-means++ α=1.5 -0.16% -0.13% -0.17% -0.01% -0.18% -0.09%
AFK-MC2 α=1 -0.44% 0.12% -0.15% -0.15% -0.24% -0.08%
AFK-MC2 α=1.5 -0.31% 0.21% 0.09% 0.09% -0.05% -0.02%

DBLP
Author-Conf.

Uniform 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
k-means++ α=1 -0.11% 0.12% -0.07% 0.27% 0.14% -1.67%
k-means++ α=1.5 -0.03% 0.11% 0.33% 0.68% 0.53% -0.74%
AFK-MC2 α=1 -0.01% -0.06% -0.87% -0.47% -0.48% -1.03%
AFK-MC2 α=1.5 -0.03% 0.34% -0.32% 0.09% -0.56% -1.10%

DBLP
Author-Venue

Uniform 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
k-means++ α=1 -0.13% 0.09% -0.12% 0.13% -0.74% -1.70%
k-means++ α=1.5 -0.01% 0.18% 0.00% 0.23% 0.39% -0.17%
AFK-MC2 α=1 -0.17% 0.10% -0.05% 0.47% -0.20% -0.68%
AFK-MC2 α=1.5 -0.19% -0.33% -0.68% -0.04% -0.50% -1.41%

DBLP
Conf.-Author

Uniform 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
k-means++ α=1 0.01% 0.04% 0.05% -0.02% -0.13% -0.09%
k-means++ α=1.5 0.00% 0.11% 0.08% -0.15% -0.18% -0.13%
AFK-MC2 α=1 0.04% 0.00% 0.05% -0.10% -0.19% -0.02%
AFK-MC2 α=1.5 0.04% 0.00% 0.06% -0.12% -0.15% -0.06%

20 Newsgroups

Uniform 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
k-means++ α=1 0.38% 0.52% 0.78% 1.83% 4.09% 7.34%
k-means++ α=1.5 0.72% 0.93% 0.89% 2.39% 4.65% 7.87%
AFK-MC2 α=1 0.24% 0.31% 0.31% 0.41% 0.11% 0.23%
AFK-MC2 α=1.5 0.37% 0.17% 0.26% 0.30% 0.08% 0.23%

RCV-1

Uniform 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
k-means++ α=1 0.13% -0.11% 0.08% -0.25% -0.17% 0.06%
k-means++ α=1.5 -0.03% 0.21% 0.53% 0.44% 0.04% 0.16%
AFK-MC2 α=1 -0.24% -0.01% -0.03% 0.39% 0.05% 0.24%
AFK-MC2 α=1.5 0.13% 0.07% -0.03% 0.22% -0.09% 0.15%

except for the 20-news data set where k-means++ performs up to 8% worse.
Supposedly, because this data set contains anomalies. AFK-MC2 [4] with α=1
finds the best initialization most of the time. While k-means++ with α=1.5
does not quite reach same the quality, it performs generally better than uniform
random. With α=1.5, both initialization methods are worse and more often
than not are below the quality of the random uniform initialization. The run
time behavior is similar on all data sets. The uniform initialization is nearly
instantaneous, while the kmeans++ and AFK-MC2 initialization generally stay
below the time needed for one iteration. They only have a small impact on the
overall run time. Usually, α=1 seems to work better than α=1.5, where the first
is the standard cosine similarity, while the latter was used in the proofs to obtain
a metric.

Accelerating Spherical k-Means 11

Table 3: Run times of all k-means variants in milliseconds.
Data set Algorithm k=2 k=10 k=20 k=50 k=100 k=200

Simpsons Wiki

Standard 166 457 845 1,646 3,015 10,047
Elkan 161 352 532 1,198 2,657 8,247
Simp.Elkan 145 312 436 800 1,230 3,100
Hamerly 171 434 732 1,860 3,976 14,386
Simp.Hamerly 166 421 657 1,450 2,471 9,858

DBLP
Author-Conf.

Standard 32,228 29,865 24,687 42,229 50,851 80,553
Elkan 5,675 9,650 12,366 39,652 54,901 82,732
Simp.Elkan 5,732 10,841 15,514 44,991 66,731 105,905
Hamerly 4,220 7,072 9,834 19,988 30,846 55,687
Simp.Hamerly 4,285 7,002 9,810 19,690 31,589 55,250

DBLP
Author-Venue

Standard 33,359 46,328 50,596 70,772 80,218 199,230
Elkan 5,730 14,593 22,733 59,725 84,011 165,756
Simp.Elkan 5,986 16,822 27,200 68,577 103,678 209,835
Hamerly 4,321 11,410 18,056 33,881 51,242 125,066
Simp.Hamerly 4,188 11,096 17,799 33,017 52,593 123,931

DBLP
Conf.-Author

Standard 1,149 6,017 9,672 20,908 33,973 61,680
Elkan 943 5,549 11,907 41,078 108,028 32,103
Simp.Elkan 894 4,018 6,184 10,998 16,435 29,093
Hamerly 944 6,840 14,760 50,282 125,513 347,668
Simp.Hamerly 944 5,347 9,158 20,115 32,640 55,421

20 Newsgroups

Standard 101 234 1,223 6,755 16,394 38,131
Elkan 118 269 498 6,683 19,917 83,407
Simp.Elkan 118 251 342 1,876 3,915 7,891
Hamerly 111 272 536 9,542 28,005 109,204
Simp.Hamerly 121 266 443 5,298 12,653 29,915

RCV-1

Standard 24,569 153,170 224,939 917,894 2,669,733 6,064,203
Elkan 7,639 38,199 47,963 115,275 260,924 547,110
Simp.Elkan 8,825 41,162 50,161 123,428 263,728 474,800
Hamerly 5,424 49,041 80,793 325,433 1,132,352 3,181,667
Simp.Hamerly 5,498 47,977 81,593 320,677 1,144,947 3,266,234

At last, we discuss the achieved improvements in run time for the acceler-
ated spherical k-means algorithms. As with the other experiments, each one was
repeated 10 times with various random seeds. Table 3 shows that for most data
sets the simplified Elkan algorithm is the fastest, but there are several interest-
ing observations to be made. On the Author-Conference data set, which has the
most rows of all data sets but also the lowest number of columns, the normal
Elkan and both Hamerly variants are faster. Interestingly, this changes when
we increase the number of columns in relation to the number of rows by trans-
posing the data (before applying TF-IDF), shown in Fig. 2. Here, the normal
Elkan and Hamerly variants increase drastically in their run time when k in-
creases. This effect originates in the increasing cost of calculating the distances
between cluster centers for the additional pruning step. By transposing the data
(to cluster conferences, not authors), we increased the dimensionality by 350×,

12 E. Schubert et al.

(a) Run time of the different algorithms
on Authors-Conf. (higher N , lower d).

(b) Run time of the different algorithms
on Conf.-Authors (lower N , higher d).

Fig. 2: Run times of the different algorithms on the DBLP author-conference
data set, and its transpose, with very different characteristics.

while at the same time reducing the number of instances by the same factor.
Computing the pairwise cluster distances now became a substantial effort. This
shows that there is no “one size fits all”, but the best k-means variant needs
to be chosen depending on data characteristics such as dimensionality and the
number of instances. While Simplified Hamerly is among the best methods in
both situations, it barely outperforms the standard algorithm on the latter data
set. Supposedly because of the very high dimensionality, its pruning power is
rather limited. While the spherical Hamerly and Elkan implementations can be
faster than the standard spherical k-means algorithms, this depends on the data,
and with an unfavorable data set they can be much worse. The simplified version
of spherical Hamerly seems to be a reasonable default choice, but for small k,
it may often be outperformed by the Elkan variants. On the well-known RCV-1
data set, speedups of over 10× are achievable for k≥100. It may be a bit dis-
appointing that there is no “winner” solution, but data sets simply may have
very different characteristics. Possibly some simple heuristics can be identified to
automatically choose an appropriate alternative based on empirical thresholds
(which need to be determined for a particular implementation and hence are
outside the scope of a scientific paper) on the data dimensionality and data set
size. In many cases, the limiting factor may be the memory usage and band-
width for the Elkan variants. Consider the DBLP authors-conference data set
with k = 100, the bounds used by Elkan with double precision require 2 GB
of RAM for the bounds alone, and have to be read and written each iteration.
The Hamerly variants only add an overhead of 44 MB. The Yin-Yang variant
which we did not yet implement allows choosing the number of bounds to use,
and hence make better use of the available RAM.

Accelerating Spherical k-Means 13

7 Conclusions

In this article, we use the triangle inequality for cosine similarity of Schubert [23],
to accelerate spherical k-means clustering by avoiding unnecessary similarity
computations. We were able to adapt the well-known algorithms of Elkan and
Hamerly (along with some simplified variants) to work with similarities rather
than distances throughout the algorithm. This is desirable because the similari-
ties are more efficient to compute, and the trigonometric bounds are tighter than
the Euclidean bounds [23] (with the first corresponding to the arc length, the
latter to the chord length). Both require the computation of a square root and
hence require similar effort.

We integrated the new triangle inequality into Elkan’s and Hamerly’s algo-
rithm as two prominent and popular choices, but acknowledge there exist further
improved algorithms such as the Yin-Yang, Exponion, and Shallot algorithms
that deserve attention in future work. The purpose of this paper is to demon-
strate that we can perform pruning directly on the cosine similarities now and
that it can speed up the algorithm run times considerably (we observed speedups
of over 10× for the well-known RCV-1 data set).

For further speedups, the new technique can also be combined with improved
initialization methods from literature. There exists a synergy between some ini-
tialization methods that we are not yet exploiting in our implementation, where,
e.g., the k-means++ initialization can pre-initialize the bounds used here, and
will then allow pruning computations already in the first iteration of the main
algorithm.

We hope that this article spurs new research on further accelerating spherical
k-means clustering using the triangle inequality, similar to Euclidean k-means.

Acknowledgments A simpler approach of adapting Hamerly’s and Elkan’s
algorithms for spherical k-means clustering still using Euclidean distances and
not the cosine triangle inequalities was explored by our student, Alexander Voß,
in his bachelor thesis.

References

1. Alamoudi, S., Hong, X., Wei, H.: Plant leaf recognition using texture features and
semi-supervised spherical k-means clustering. In: IJCNN (2020)

2. Arfiani, Rustam, Z., Pandelaki, J., Siahaan, A.: Kernel spherical k-means and
support vector machine for acute sinusitis classification. IOP Conf. Ser.: Mater.
Sci. Eng. 546 (jun 2019)

3. Arthur, D., Vassilvitskii, S.: k-means++: the advantages of careful seeding. In:
ACM-SIAM Symposium on Discrete Algorithms, SODA (2007)

4. Bachem, O., Lucic, M., Hassani, S.H., Krause, A.: Fast and provably good seedings
for k-means. In: Neural Information Processing Systems (2016)

5. Bachem, O., Lucic, M., Krause, A.: Distributed and provably good seedings for
k-means in constant rounds. In: Int. Conf. Machine Learning (2017)

14 E. Schubert et al.

6. Bahmani, B., Moseley, B., Vattani, A., Kumar, R., Vassilvitskii, S.: Scalable k-
means++. Proc. VLDB Endow. 5(7) (2012)

7. Borgelt, C.: Even faster exact k-means clustering. In: Int. Symp. Intelligent Data
Analysis, IDA (2020)

8. Dhillon, I.S., Modha, D.S.: Concept decompositions for large sparse text data using
clustering. Mach. Learn. 42(1/2) (2001)

9. Ding, Y., Zhao, Y., Shen, X., Musuvathi, M., Mytkowicz, T.: Yinyang k-means: A
drop-in replacement of the classic k-means with consistent speedup. In: Int. Conf.
Machine Learning (2015)

10. Elkan, C.: Using the triangle inequality to accelerate k-means. In: Int. Conf. Ma-
chine Learning (2003)

11. Endo, Y., Miyamoto, S.: Spherical k-means++ clustering. In: Modeling Decisions
for Artificial Intelligence (2015)

12. Hamerly, G.: Making k-means even faster. In: SIAM Int. Conf. Data Mining (2010)
13. Hamerly, G., Drake, J.: Accelerating Lloyd’s algorithm for k-means clustering. In:

Partitional Clustering Algorithms (2014)
14. Hill, M.O., Harrower, C.A., Preston, C.D.: Spherical k-means clustering is good for

interpreting multivariate species occurrence data. Methods Ecol. Evol. 4(6) (2013)
15. Kriegel, H., Schubert, E., Zimek, A.: The (black) art of runtime evaluation: Are

we comparing algorithms or implementations? Knowl. Inf. Syst. 52(2) (2017)
16. Lang, A., Schubert, E.: BETULA: numerically stable cf-trees for BIRCH clustering.

In: Int. Conf. Similarity Search and Applications, SISAP (2020)
17. Lewis, D.D., Yang, Y., Rose, T.G., Li, F.: RCV1: A new benchmark collection for

text categorization research. J. Mach. Learn. Res. 5 (2004)
18. Ley, M.: The DBLP computer science bibliography: Evolution, research issues,

perspectives. In: String Processing and Information Retrieval. vol. 2476 (2002)
19. Li, M., Xu, D., Zhang, D., Zou, J.: The seeding algorithms for spherical k-means

clustering. J. Glob. Optim. 76(4) (2020)
20. Moriya, T., Roth, H.R., Nakamura, S., Oda, H., Nagara, K., Oda, M., Mori, K.:

Unsupervised pathology image segmentation using representation learning with
spherical k-means. In: Medical Imaging 2018: Digital Pathology. vol. 10581 (2018)

21. Newling, J., Fleuret, F.: Fast k-means with accurate bounds. In: Int. Conf. Machine
Learning (2016)

22. Pratap, R., Deshmukh, A.A., Nair, P., Dutt, T.: A faster sampling algorithm for
spherical k-means. In: Asian Conf. Machine Learning (2018)

23. Schubert, E.: A triangle inequality for cosine similarity. under review at SISAP
2021 (2021)

24. Schubert, E., Gertz, M.: Numerically stable parallel computation of (co-)variance.
In: Int. Conf. Scientific and Statistical Database Management (2018)

25. Schubert, E., Zimek, A.: ELKI: A large open-source library for data analysis -
ELKI release 0.7.5 ”heidelberg”. CoRR abs/1902.03616 (2019), http://arxiv.
org/abs/1902.03616

26. Yu, Q., Chen, K., Chen, J.: Using a set of triangle inequalities to accelerate k-means
clustering. In: Int. Conf. Similarity Search and Applications, SISAP (2020)

http://arxiv.org/abs/1902.03616
http://arxiv.org/abs/1902.03616

	Accelerating Spherical k-Means

