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Abstract. We study the similarity of adverse effects of COVID-19 vac-
cines across different states in the United States. We use data of 300,000
COVID-19 vaccine adverse event reports obtained from the Vaccine Ad-
verse Event Reporting System (VAERS). We extract latent topics from
the reported adverse events using a topic modeling approach based on
Latent Dirichlet allocation (LDA). This approach allows us to repre-
sent each U.S state as a low-dimensional distribution over topics. Using
Moran’s index of spatial autocorrelation we show that some of the topics
of adverse events exhibit significant spatial autocorrelation, indicating
that there exist spatial clusters of nearby states that exhibit similar ad-
verse events. Using Anselin’s local indicator of spatial association we
discover and report these clusters. Our results show that adverse events
of COVID-19 vaccines vary across states which justifies further research
to understand the underlying causality to better understand adverse ef-
fects and to reduce vaccine hesitancy.
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1 Introduction

By June 12th, 2021, more than 2.3 billion doses of various brands of COVID-19
vaccines had been administered world-wide with more than 300 million doses
administered in the United States [10]. The U.S. Centers for Disease Control
and Prevention (CDC) has stated that all U.S. authorized vaccines are safe and
efficient [6]. While generally safe, the COVID-19 vaccines have adverse effects,
including common side effects such as injection site pain and fever, but also in-
cluding rare adverse effects that can be more severe. In the United States alone,
by June 1st, 2021, a total of 297,410 of adverse events have been reported, col-
lected, and made publicly available by the CDC and the U.S. Food and Drug
Administration in a database called the Vaccine Adverse Event Reporting Sys-
tem (VAERS) [14]. As cases of severe symptoms gain public visibility in the
news [28], these seemingly contradicting facts of general safety and possibly se-
vere side-effects are a source of confusion leading to vaccine hesitancy among
the population [31].
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(a) California (b) Florida

Fig. 1: COVID-19 Adverse Effect Clouds per Region.

Towards a better understanding of COVID-19 vaccine adverse events we
propose a similarity measure to quantify the similarity of sets of adverse events.
To illustrate the challenge tackled in this work, Figure 1 shows word clouds
of adverse effects for California (Figure 1a) and for Florida (Figure 1b). These
word clouds show the font size of the most frequent adverse effects proportional
to their relative frequency observed in that state. We observe that common
side effects such as headache, pyrexia (fever), and chills appear with similar
relative frequency in both states and we also observe that some adverse effects
appear more frequently in one region than another. For example, it pyrexia
and dizziess are more frequently observed in Florida. Our goal is to measure the
(dis-)similarity of the adverse effects observed in different regions. This similarity
allows to understand how reported adverse events vary over space, over time,
across different vaccine brands, and across different populations. We use our
proposed similarity measure to study if we can observe statistically significant
clusters of regions exhibiting similar adverse effects using VAERS data for the
United States. While our work does not answer the question whether vaccines
are safe, we hope that public health researchers and health officials may find our
similarity measure useful to better understand adverse events, their variations
over space, and the underlying causal factors.

Summarizing our approach, we use a bag-of-words model to describe a set of
adverse events, such as reported in a spatial region. We leverage Latent Dirichlet
Allocation (LDA) to extract latent topics of adverse effects for each region. LDA
has been successfully used to extract domains and research topics from scientific
research papers [17] and news topics (such as “Sports”, “Politics”, “Entertain-
ment”) from news articles [29]. To extract latent topics of adverse events, we
treat the adverse events reported in a spatial region as documents and indi-
vidual adverse effects as words. We qualitatively evaluate the modeled topics
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and show that they are able to represent, for example, adverse events related
to “pyrexia/fever” and adverse effects related to “vertigo/dizziness”. Then, we
describe states of the U.S. by their adverse event topic distribution to evalu-
ate whether topics of vaccine adverse effects vary across the United States. We
quantitatively evaluate if this variation exhibits any significant spatial autocor-
relation, that is, if spatially close states exhibit similar topics of adverse events.

For this purpose, we first survey existing work in Section 2 and formally
define an adverse event database in Section 3. Our approach to extract latent
topics of adverse events using topic modeling is described in Section 4. Using
these topics as a low-dimensional embedding of adverse events in a spatial region,
our approach to quantify spatial autocorrelation and to find spatial clusters of
states that exhibit significantly similar (or dissimilar) topics of adverse effects is
described in Section 5. We explore the global and local spatial autocorrelation
of COVID-19 vaccine adverse events in Section 7 to discover significant spatial
autocorrelation, showing that some topics of adverse events indeed vary in dif-
ferent parts of the United States. Finally, we conclude in Section 8 and identify
future directions.

2 Related Work

Adverse Effects of Vaccines Vaccines are, without any doubt, a paramount
weapon to fight deadly diseases evident by the fact that “In 1900, for every 1,000
babies born in the United States, 100 would die before their first birthday, often
due to infectious diseases” [34]. Furthermore, vaccines not only protect those
receiving the vaccines but also vulnerable groups around them, such as new born
babies, who may not be able to receive a vaccine [12]. Yet, there are adverse
effects [14] including the 300,000 adverse events reported for the COVID-19
vaccines by June 1st, 2021. Understanding and mitigating these adverse events
will not only improve the well-being of those receiving the vaccines, but will
also decrease fear of vaccines that leads to high vaccine hesitancy as observed
during the COVID-19 pandemic [11]. To the best of our knowledge, this is the
first study investigating the similarity of adverse effects of COVID-19 vaccines to
understand their spatial autocorrelation. We hope that our proposed techniques
will find adaption by epidemiologists to improve our understanding of the ecology
of past, present, and future infectious diseases.

Topic Modeling of Adverse Events Topic modeling is an unsupervised learn-
ing technique to discover underlying themes of a collection of documents. Latent
Dirichlet Allocation (LDA) is one of the more common topic modeling techniques
in the literature [4]. In the context of pharmacovigilance, LDA has been used to
find potentially unsafe dietary supplements [35], but without the consideration
of the spatial distribution of latent topics among adverse effects. In our prior
work in [2] we performed a spatio-temporal study on the adverse events of blood
thinning drugs and their spatial auto-correlation. This study mainly limited by
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data availability, having adverse events reported by country only. For this rea-
son, our prior study in [2] used European countries, but most countries had to
be removed due to having too few reported adverse events. The wide availability
of VAERS COVID-19 vaccine data at United States state level enables us to
directly explore the latent adverse event features for spatial auto-correlation.

Pharmacovigilance The field of pharmacovigilance aims at understanding the
occurrence of adverse effects of drugs [18,21]. Existing work has shown that ad-
verse effects of a single drug or multiple combination of drugs may vary over
space and time due to racial and ethnic disparities [3,27,25], environment [26,20],
and drug quality [7]. Specifically for vaccines, there is evidence that stress may
have an amplifying effect on immune response and adverse events [16]. However,
such aspects of understanding the interactions between drugs and other external
factors are out of scope of this work. In this work, we investigate the effect of
location on adverse effects of the COVID-19 vaccines. While location may be
a proxy of other factors (such as stress), this work does not provide or imply
any causality between location and adverse events. Yet, we hope that an under-
standing of the spatial distribution and autocorrleation of adverse events may
help experts discover such causalities.

3 Problem Definition

This section formally defines adverse events, adverse effects, and the problem
of spatio-temporal clustering of adverse events. First, we provide a definition of
adverse effects and events.

Definition 1 (Adverse Effect). An Adverse Effect is a textual representation
of an undesirable experiences associated with the use of a medical product. We
let A = {A1, ..., AN} denote the set of all adverse events and N denotes the
number of all (possible) adverse effects.
Data such as collected in the VAERS database is a collection of records each
associated with a set of adverse effects, a specific pharmaceutical drug, a location,
and time. We call such as record an Adverse Event (AE), formally defined as
follows:
Definition 2 (Vaccine Adverse Event Database). Let A denote a set of
adverse effects, let S denote a set of spatial regions, and let D denote a set of
vaccine brands. An Adverse Event Report Database DB is a collection of adverse
event reports (s,A, d), where s ∈ S is a spatial region, A ⊆ A is a set of adverse
effects, and d ∈ D is the brand for which the adverse effects are reported. We let
M := |DB| denote the number of adverse event reports in DB

We note that a single adverse event may report multiple adverse effects. As
an example, Table 1 shows exemplary adverse events from the VAERS database.
The first line in Table 1 implies that “Dizziness”, “Injection site pruritus”, “In-
jection site rash”, and “Somnolence” are adverse effects reported in Maryland
Moderna vaccine.
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Adverse
Event ID

Drug Location Set of Adverse Effects

1139067 Moderna MD Dizziness, Injection site pruritus, Injection site
rash, Somnolence

1004857 Moderna PA Nausea, Palpitations, Presyncope, Pyrexia,
Tremor

1115746 Moderna NY Chills,Headache,Nausea,Pain,Pain in extremity

1148711 Moderna CA Axillary pain, Fatigue, Headache, Nausea, Pain in
extremity

1240185 Pfizer IN Fatigue,Headache,Pain,Pyrexia

1120846 Pfizer UT Nausea,Pain in extremity, Sleep disorder, Tinnitus,
Vertigo

1104541 Pfizer GA Injection site reaction, Rash pruritic

1138693 Pfizer WI Eye pruritus, Lip swelling, Nasal pruritus, Swelling
face, Urticaria

1200860 Janssen TX Headache

1114482 Janssen MI Chills, Hyperhidrosis, Pyrexia

1244933 Janssen IL Heart rate, Heart rate increased, Pain, Poor qual-
ity sleep, Pyrexia

1202067 Janssen RI Chills, Injection site erythema, Menstruation irreg-
ular, Pyrexia

Table 1: Sample records of Adverse Event Report Database. Each Line is an
Adverse Event.

Our goal is to find clusters of locations that exhibit similar adverse events.
Towards this goal, we group adverse events by region.

Definition 3 (Spatial Adverse Events). Let DB be an adverse event report
database and let s′ ∈ S be a spatial region. We define

DBs′ := {(s,A, d) ∈ DB|s = s′}

as the set of all adverse events reported in regions′.

In the next section, we describe how we obtain latent topics of adverse events
to represent each region as a low dimensional topic distribution.

4 Latent Adverse Event Topic Modeling

This section presents our Latent Dirichlet Allocation (LDA) based approach to
extract latent topics from adverse events. All our code to access the data and to
run the topic modeling can be found at https://github.com/ahmedaskar64/Spatio-
Temporal-AEs-Similarity/tree/main.
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Fig. 2: LDA Topic Modeling of Adverse Events. For each adverse event a topic
distribution θ is estimated and for each topic i, an adverse effect distribution ϕi

is estimated. Given a topic Z generated from θ, observable adverse effects (AEs)
are generated from ϕZ .

A challenge of mining adverse events is the potentially large number of differ-
ent adverse effects. The FAERS Adverse Event Databases use MedDRA codes [5]
and terminology to standardize adverse effects such as using “pyrexia” instead
of “heightened temperature” of “fever”. Yet, the number of possible adverse ef-
fects is too large and the resulting feature space of using bag-of-words semantics
to represent adverse effects is too high dimensional. To address this issue, we
acknowledge that adverse effects are symptoms of unknown (latent) underlying
causes. While one way of identifying causes is involving a medical expert, we pro-
pose a data-driven approach to identify underlying topics among adverse events
using topic modeling that we interpret as causes. For that, we employ Latent
Dirichlet Allocation (LDA) [4] – a generative probabilistic model which assumes
that each adverse event is a mixture of underlying (latent) topics, and each topic
has a (latent) distribution of more and less likely adverse effects.

A graphical representation of our LDA model using plate notation is shown
in Fig. 2. A vector α of length K is used to parameterize the a priori distribution
of topics. The parameter K corresponds to the number of latent topics used to
model adverse events. When an adverse event is created, we assume that its
topics are chosen following a Dirichlet distribution having parameter α which
we use to obtain a topic distribution θ for each of our M = adverse events. Thus,
the large plate in Fig. 2 corresponds to a set of M adverse events, each having
a topic distribution θ drawn randomly (and Dirichlet distributed) from α.

For each topic, the prior parameter β is used to generate the distribution of
adverse effects within a topic. Thus, we assume that a topic generates adverse
effects following a Dirichlet distribution having a vector β of length |A| as pa-
rameter, where A is the set of observed adverse effects (c.f. Definition 1). For
each of our K topics, a resulting vector ϕi, 1 ≤ i ≤ K stores the adverse effect
distribution of topic K.

To generate the adverse effects of an adverse event, a topic is chosen randomly
from the topic distribution θ and, given this topic, a number of Ni adverse ef-
fects are generated randomly from the adverse effect distribution ϕ – where Ni

is assumed to be independent from the chosen topic and uniformly distributed.
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In Fig. 2, the node AE denotes the (observable) set of all N =
∑

iNi adverse
effects, and Z is a function that maps each word to the topic that generated
it. The reason for choosing a Dirichlet distribution rather than a more straight-
forward uniform or multinomial distribution for the topic and word priors is
inspired by research showing that the distribution of words in text can be better
approximated using a Dirichlet distribution [23].

To infer the topics of our adverse event database DB, we employ a generative
process. Given the observed adverse effects, LDA optimizes the latent variables
to maximize the likelihood of matching the observed adverse events and cor-
responding adverse effects. This generative process works as follows. Adverse
events are represented as random mixtures over latent topics, where each topic
is characterized by a distribution over all N adverse effects. LDA assumes the
following generative process for database DB consisting of M adverse events,
each having a number of Ni adverse effects.

– For each adverse event choose a topic distribution θm ∼ Dir(α), 1 ≤ m ≤M ,
where Dir(α) is a Dirichlet distribution with prior α. In our experiments,
we initially assume each topic to have uniform prior probabilities, having
αi = αj for 1 ≤ i, j ≤ K. This apriori distribution is adapted using Bayesian
inference [4] to maximize the likelihood of generating the observed keywords.

– For each topic, choose an adverse effect distribution ϕi ∼ Dir(β), where
1 ≤ i ≤ K. For our experiments, we assume each adverse effect to have the
same prior probability N−1.

– For each adverse effect ae in adverse event j:
1. Choose a topic z ∼ Multinomial(θj) from the topic distribution of j,

and
2. Choose a word w ∼Multinomial(ϕz) from the adverse effect ϕz of topic
z.

Here, Multinomial(x) corresponds to a multinomial distribution drawing
from a stochastic vector x.

To describe each adverse event in a latent topic space, we use the adverse event
specific topic distributions θm which describe each adverse event m as a set of K
latent features corresponding to the weight of the respective latent topic. While
this topic modeling does not provide us with any semantic of the underlying
topics, we know that adverse events having similar latent features also exhibit
similar adverse effects. Based on the similarity of latent topics we propose a hi-
erarchical agglomerative clustering approach to find regions that exhibit similar
adverse events in Section 5 and test these clusters for spatial autocorrelation
using Moran’s I in Section 7.

5 Spatial Clustering of Vaccine Adverse Event Topics

The latent topic modeling of Section 4 provides us with a topic distribution θi
for each adverse event report d ∈ DB. To describe the topic distribution of a
region, we use the average topic distribution of all adverse events reported in the
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region. To measure similarity between the topics of adverse events of two regions,
we use Euclidean distance between these resulting average topic distributions.
Formally,

Definition 4 (Region-Wise Adverse Event Distance). Let DB be an ad-
verse event database, let DBs1 ,DBs2 ⊆ DB, let K be a positive integer and let
θ(ae) denote the latent topic distribution of an adverse event ae ∈ DB using the
LDA model described in Section 4, then:

dist(DBs1 ,DBs2) :=

∥∥∥∥∥
∑
DBs1

θ(ae)

|DBs1 |
−
∑
DBs2

θ(ae)

|DBs2 |

∥∥∥∥∥
2

,

where ‖.‖2 denotes the Euclidean norm.

To find clusters among regions having similar topics of adverse events we
leverage the distance function of Definition 4 and employ a hierarchical agglom-
erative clustering approach [8]. The advantage of such an approach is that we
neither have to guess the number of clusters as often needed for partitioning
clustering approaches [22] nor have to define a density threshold as required by
density-based clustering algorithms [13,32]. To merge clusters, we employ com-
plete linkage, which defines the distance between two clusters of regions as the
maximum pair-wise distance of regions among the clusters.

Figure 3 shows the pair-wise distance (see Definition 3) for each pair of
states for the 49 states of the United States excluding Alaska, Puerto Rico,
and Hawaii using K = 10 adverse event topics. In Figure 3 darker colors cor-
respond to a higher pair-wise similarity. We observe a large group of mutu-
ally similar states having smaller nested clusters of similar states thus explain-
ing our choice for hierarchical clustering. We also observe that is not trivial
to delineate clusters due to noise, which explains our choice of complete link
clustering to maximize delineation and avoid having clusters “grow together”.
A high resolution version of Figure 3 can be found on our project website
https://github.com/ahmedaskar64/Spatio-Temporal-AEs-Similarity/tree/main.

6 Spatial Autocorrelation

Given the latent topics of vaccine adverse events as described in Section 4 and
the clustering approach of Section 5, we next investigate if the observed adverse
event topics exhibit significant spatial autocorrelation. In other words, can we
reject the null hypothesis that topics are independent of location by observing
that spatially close regions exhibit similar topics?

For this purpose, we retain all clusters (of all sizes) corresponding to all nodes
in the dendrogram excluding clusters of size one and excluding the root of the
dendrogram that contains all regions. Given any such cluster of regions that
exhibit similar topics of adverse events, we employ Moran’s I measure of spatial
autocorrelation [24]. Moran’s I statistic tests if a variable measured on spatial
regions exhibits a significant spatial autocorrelation, either positive (clustered) or

https://github.com/ahmedaskar64/Spatio-Temporal-AEs-Similarity/tree/main
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Fig. 3: Pair-wise similarity matrix of latent topics of COVID-19 vaccine adverse
events of counties in the United States.

negative (dispersed). To measure the spatial autocorrelation of clusters obtained
as described in Section 5, we use one-hot encoding (or dummy-coding) to encode
each individual cluster membership into a binary variable. Thus, for a cluster C,
the cluster membership variable of a region r is set to 1 if r ∈ C and 0 otherwise.
Moran’s I requires an adjacency metric on regions to assess the similarity between
polygonal regions. For this purpose, we employ the Queen Contiguity model [15],
that is, two regions are considered adjacent if they share boundary. We directly
report Moran’s I test statistic whose range is in [−1,−1], ranging from strongly
dispersed (close to -1) to strongly clustered (close to 1). We also report the p-
value of the null-hypothesis that the regions are distributed randomly without
any spatial pattern by transforming Moran’s I values to z-values and employing a
two-tailed z-test [9]. The resulting p-values indicate whether a cluster of regions
having similar topics of adverse events are significantly spatially clustered or
dispersed. We used the geopandas library for handling spatial attributes and
Pysal library for Moran’s I test of spatial autocorrelation [19,30].
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Topic (Probabilities in %) Adverse Effects
1 (4.5)”headache”, (3.6)”pyrexia”, (3.6)”fatigue”, (3.3)”pain”, (3.1)”chills”, (3.0)”nausea”,

(2.3)”pain-in-extremity”, (1.7)”dizziness”, (1.7)”injection-site-erythema”, (1.7)”arthralgia”
2 (4.1)”headache”, (2.8)”dizziness”, (2.6)”pyrexia”, (2.6)”pain-in-extremity”, (2.5)”fatigue”,

(2.5)”chills”, (2.4)”nausea”, (2.4)”pain”, (2.1)”injection-site-pain”, (1.6)”dyspnoea”
3 (6.9)”headache”, (4.1)”pyrexia”, (3.8)”fatigue”, (3.7)”chills”, (3.0)”pain”, (2.9)”dizziness”,

(2.8)”nausea”, (1.9)”pain-in-extremity”, (1.8)”injection-site-erythema”, (1.8)”injection-
site-pain”

4 (8.7)”chills”, (8.3)”pyrexia”, (7.2)”headache”, (7.2)”pain”, (6.4)”fatigue”, (3.9)”nausea”,
(3.2)”pain-in-extremity”, (2.6)”injection-site-pain”, (2.2)”myalgia”, (2.1)”dizziness”

5 (4.5)”pyrexia”, (4.1)”headache”, (4.0)”chills”, (3.4)”pain”, (3.1)”fatigue”, (2.5)”nausea”,
(2.5)”dizziness”, (2.1)”injection-site-pain”, (2.1)”arthralgia”, (2.1)”pain-in-extremity”

6 (3.8)”dizziness”, (3.3)”headache”, (2.4)”chills”, (2.3)”nausea”, (2.2)”fatigue”, (2.2)”pain”,
(2.1)”pain-in-extremity”, (1.5)”dyspnoea”, (1.5)”injection-site-erythema”, (1.5)”pyrexia”

7 (6.5)”headache”, (5.5)”pyrexia”, (5.1)”chills”, (4.8)”pain”, (4.7)”fatigue”, (3.2)”nausea”,
(2.6)”injection-site-pain”, (2.4)”dizziness”, (2.0)”injection-site-erythema”, (1.7)”pain-in-
extremity”

8 (5.7)”headache”, (4.4)”fatigue”, (4.0)”chills”, (3.8)”pain”, (3.2)”pyrexia”, (3.0)”pain-
in-extremity”, (2.7)”nausea”, (2.1)”injection-site-pain”, (1.8)”injection-site-erythema”,
(1.8)”dizziness”

9 (4.0)”headache”, (3.9)”fatigue”, (3.6)”pain”, (3.2)”chills”, (2.9)”nausea”, (2.8)”pyrexia”,
(2.5)”dizziness”, (1.9)”pain-in-extremity”, (1.9)”injection-site-pain”, (1.6)”pruritus”

10 (3.8)”pyrexia”, (3.3)”fatigue”, (2.9)”headache”, (2.8)”pain”, (2.6)”chills”, (2.4)”dizziness”,
(2.1)”nausea”, (1.9)”pruritus”, (1.9)”rash”, (1.9)”injection-site-erythema”

Table 2: Top-10 most probably adverse effects per topics across all regions and
all COVID-19 vaccine brands.

7 Experimental Evaluation

For our experimental evaluation we collected data from the VAERS database as
described in Section 1 grouped by U.S. states and grouped by the three brands of
vaccines authorized by 06/14/2021: Janssen, Moderna, and Pfizer. The experi-
ments are conducted on a PC with Intel(R) Xeon(R) CPU E3-1240 v6 @3.70GHz
and 32GB RAM. Windows 10 Enterprise 64-bit is the operating system, and all
the algorithms are implemented by Python 3.7. All code, including code to ob-
tain data from the VAERS API, is available at:
https://github.com/ahmedaskar64/Spatio-Temporal-AEs-Similarity/tree/main.

7.1 Qualitative Analysis of Topics

For K = 10 latent topics of COVID-19 adverse events Table 2 shows the ϕi

vectors of our LDA model which correspond to the adverse effect distribution
of the i’th topic. For each topic in Table 2 we show the Top-10 highest prob-
ability adverse effects. First, we observe that the resulting ten topics are hard
to discriminate, as they all contain common adverse effects such as “headache”,
“pyrexia” (fever). Yet, we do observe different distributions of these adverse ef-
fects. We observe that Topic #4 has high probabilities for common symptoms
and consequently low probabilities for rare symptoms. Topic #6 seems to corre-
sponds to light symptoms with a low probability of fever, but higher probability
of “dizziness”. However, we note that our team does not include a medical ex-
pert, thus we refrain from a deeper analysis of these topics and conclude that our
LDA approach has been able to find topics that differ in distribution of adverse
effects. We note that due to truncation to only showing the Top-10 most probable

https://github.com/ahmedaskar64/Spatio-Temporal-AEs-Similarity/tree/main
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Pattern p-value Moran’s
Index

z-score Topic
ID

Clustered 0.0006 0.2756 3.4512 1

Random 0.6214 -0.0635 -0.4938 2

Clustered 0.0966 0.1216 1.6616 3

Random 0.6643 -0.0464 -0.4340 4

Random 0.2054 0.0920 1.2662 5

Random 0.6867 0.0109 0.4033 6

Dispersed 0.0754 -0.1785 -1.7782 7

Clustered 0.0071 0.2149 2.6938 8

Random 0.1988 0.0875 1.2850 9

Clustered 0.0002 0.3163 3.7895 10

Table 3: Moran’s I measure of global spatial autocorrelation for each of the
K = 10 topics of COVID-19 adverse events.

adverse effects, we do not show uncommon and rare adverse effects which may
define a topic (thus having most of it’s probability mass focused within this sin-
gle topic). The interested reader may find the full list of adverse effect per topic
probabilities on our project website (https://github.com/ahmedaskar64/Spatio-
Temporal-AEs-Similarity/tree/main), also including the per-topic adverse effect
distributions for K = 3 and K = 20 topics.

7.2 Spatial Anaylsis of COVID-19 Adverse Event Topics

Table 3 shows the degree of spatial autocorrelation of each of the K = 10 topics
of adverse events. For this purpose, we associated each U.S. state i with it’s
corresponding ϕik probability of topic k ∈ {1, ..., 10}. With each states having
it’s corresponding probability for topic k, we use Moran’s I measure of spatial
autocorrelation [24]. Moran’s I is a test statistic to test the hypothesis that a spa-
tial phenomenon appears uniformly at random without any spatial pattern. We
observe in Table 3 that out of the ten topics, six topics show no spatial autocorre-
lation (unable to reject the null hypothesis of a random pattern), one topic shows
negative spatial autocorrelation (implying a significant dispersed pattern), and
three topics exhibit a positive spatial autocorrelation (spatially clustered pat-
terns). First, we note testing ten hypothesis, and at the high p-value of 0.0754
we’d expect one such pattern by chance under the null hypothesis. Accounting
for the multiple hypothesis testing problem [33] (for example, using Bonferroni
correction [36]), the dispersed pattern of Topic #7 is no significant. However,
for the clustered patterns of Topics #1 and #8, and #10 we observe highly sig-
nificant p-value of 0.0006, 0.0071, and 0.0002, respectively, showing that these
three topics of COVID-19 adverse events do exhibit significant spatial autocor-
relation. This results shows that some latent topics among the adverse effects of
the COVID-19 vaccines indeed depend on location. For a deeper study, we show

https://github.com/ahmedaskar64/Spatio-Temporal-AEs-Similarity/tree/main
https://github.com/ahmedaskar64/Spatio-Temporal-AEs-Similarity/tree/main
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(a) Topic #1 (b) Topic #7 (c) Topic #10

Fig. 4: Local Indicator of Spatial Autocorrelation (LISA). Light red areas corre-
spond to high-high clusters. Light blue areas are low-low clusters. Dark red and
dark blue areas corresponds to high-low and low-high outliers.

the Local Indicator of Spatial Autocorrelation (LISA [1]) in Figure 4, showing
the spatial location of clusters of regions that exhibit high (or low) probabilities
of the corresponding topic. Using LISA, a cluster is defined as a region having
a high (low) value that is surrounded by regions that also have high (low) val-
ues. Interestingly, we observe that different parts of the United States exhibit
high (low) values in these three significant latent topics. We also observe high-
low (low-high) outliers, i.e., regions having high (low) topic probabilities that
are surrounded by regions having low (high) topic probabilities. These signifi-
cant clusters that adverse effects indeed vary locally. The underlying causality
warrants further study to understand why certain regions of the United States
exhibit different topics of adverse events.

8 Conclusions

In this work, we tackled the problem of measuring (dis-)similarity between ad-
verse events of COVID-19 vaccines observed in different regions. Our measure
leverages a topic modeling approach using LDA to map each adverse event from
a (textual) set of adverse effects to a latent topic distribution. Using a database
of 300,000 adverse event reports of COVID-19 vaccines in the United States, in-
vestigate the underlying topics exhibit any spatial autocorrelation to understand
if different places exhibit different adverse events. Our results show that some of
the latent topics of COVID-19 adverse events show significant positive spatial
autocorrelation. Our local analysis of spatial autocorrelation show that certain
topics of adverse events have increased (or decreased) likelihood in different parts
of the United States.

We hope that teams of medical experts may find this result to investigate
the underlying causality. Reasons could be due to vaccine quality issues, storage
and cooling issues, or simply due to different brands of vaccines. Our own future
work will include looking at the correlation between adverse event topics and
different vaccine brands to understand topics and possibly the clusters that we
have observed. We will also look into temporal changes of topics to gain an
understanding how adverse events may change over time and due to climate.

Finally, we note that all of our implementations, experiments, and results are
available at our project website:
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https://github.com/ahmedaskar64/Spatio-Temporal-AEs-Similarity/tree/main,
where we also include additional experiments which we could not fit into this
paper.
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