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Abstract. Polygons appear as constructors in many applications and
deciding if two polygons match under similarity transformations and
noise is a fundamental problem. Solutions in the literature consider only
matching pairs of polygons, implying a sequential comparison when we
have a collection. In this paper, we present the first algorithm allowing
indexed retrieval of polygons under similarities. We reduce the problem
to searching points in the plane, exact searching in the absence of noise,
and approximate searching for similar noisy polygons. The above gives
a O(n + log(m)) time algorithm to find the matching polygons under
noise and O(1) time for exact similar polygons. We tested our heuristic
for indexed polygons in an extensive collection of convex, star-shaped,
simple, and self-intersecting polygons. For small amounts of noise, we
achieve perfect recall for all polygons. For large amounts of noise, the
lowest recall is for convex polygons, while attaining the highest recall
is for general (self-intersecting) polygons. The above is not a significant
limitation. To recover convex polygons efficiently before indexing, we de-
fine a random permutation of the vertices, converting all input polygons
to a general polygon and achieving the same successful recovery rates,
which is a perfect recall for high noise levels.
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1 Introduction

Shapes appear in many applications fields like computer-aided design, computer-
aided manufacturing, computer vision [18], medical imaging [12] and even ar-
chaeology [16]. Shape analysis deals with the concept of matching shapes. The
definition of matching changes with the application field. It ranges from congru-
ence transformations, where the shapes could be rotated, translated, or reflected
without being scaled, to similarity transformations, which includes scaling to the
previous set of transformations, affine transformations, projective transforma-
tions, to Riemannian isometries (for curved surfaces), and conformal mappings,
or more general transformations. Matching could also include partial matching,
where only a portion of the shape has a match. As a rule of thumb, the more
general the transformation, it is more difficult to find a fast algorithm to find
the best match. For an arbitrary transformation, the problem is NP-complete.
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We fix our attention on the fundamental problem of complete polygon match-
ing, as opposed to partial matching. The problem of partial matching, or dealing
with insertions and deletions, can be handled by fragmenting the polygons being
compared. Moreover, we are especially interested in the indexed version of the
problem instead of just comparing two polygons for matching.

1.1 The problem: indexed polygon matching

We define the problem of indexed matching. A collection of polygons is prepro-
cessed and stored, and a query is presented to the system. The outcome will be
all the matching shapes in the collection.

We shall identify points (x, y) in the plane with corresponding complex
numbers z = x + y

√
−1. A polygon in the plane will be an ordered set of

points, or complex numbers, where the order specifies consecutive vertices. Self-
intersection are allowed since the order is arbitrary. Therefore, the cyclic shifts
(z2, z3, . . . , zn, z1), (z3, z4, . . . , z1, z2), . . . , (zn, z1, . . . , zn−2, zn−1) and the reversed
labeling (zn, zn−1, . . . , z2, z1) determine different labels for the same polygon
(z1, z2, . . . , zn−1, zn). But a general permutation p : {1, 2, . . . , n} → {1, 2, . . . , n}
could determine a different polygon (zp(1), . . . , zp(n)) because the consecutive
vertices vary and therefore the edges are different.

An affine transformation f : R2 → R2 can be (uniquely) written in terms of
sums and products of complex numbers as

f(z) = αz + βz̄ + γ,

where α, β, γ ∈ C and |α|2 − |β|2 = det f 6= 0. Here z̄ stands for the complex
conjugated of z. When β = 0 the affine transformation is a similarity transfor-
mation.

Given polygons Z = (z1, z2, . . . , zn) ∈ Cn and W = (w1, w2, . . . , wn) ∈ Cn,
our problem consists of determining if there exists an affine transformation f
such that Z = f(W ). Since affine transformations have three complex param-
eters, finding two corresponding triples of consecutive points in both polygons
is enough. A näıve procedure will be to fix a triplet in Z and try all the cyclic
shifts in W to find the correspondence, which takes O(n) operations for one
triplet. Since there are O(n) consecutive triplets, the entire process takes O(n2)
operations.

Now assume we have a given collection of polygons Z1, Z2, . . . , Zm and a
query polygon W , and we want to know which of the Z` are images of W under
a similarity. Using a sequential approach and the näıve procedure above, the
solution can be found in O(mn2) operations. In general, without an index, the
complexity will depend linearly on the number of polygons in the collection,
multiplied by the complexity of an individual match. We will show how to im-
prove this complexity using the defined invariants and a two-dimensional index
for querying.
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1.2 Summary of results

For polygons Z ∈ Cn, we construct complex scalar functions ϕj : Cn → C, j =
1, . . . , b(n− 1)/2c with the following properties

1. ϕnj (Z) = ϕnj (f(Z)) with f : Cn → Cn an arbitrary similarity function,
including mirroring and cyclic shifts.

2. ϕj is analytic, that is for ∆Z = (∆z1, . . . ,∆zn), an unknown bounded addi-
tive noise, we have |ϕj(Z)n − ϕj(Z +∆(Z))n| ≤ r.

3. If Z,W ∈ Cn and Z and W are not similar, then ϕj(Z) 6= ϕj(W ) almost
surely.

4. For a collection of polygons Z1, . . . , Zm and a query polygon W , we show
how to use the previous properties to preprocess Z1, . . . , Zm to quickly find
all Zi such that Zi = f(W ). This is done by using a two-dimensional spatial
index to store ϕj(Z1)n, . . . , ϕj(Zm)n at preprocessing time, and finding the
nearest neighbor of ϕj(W )n, as NN(ϕj(W )n at query time.

5. The above procedure has high recall only for general, auto-intersecting poly-
gons when the amount of noise ∆ is above a certain threshold. We show that
if we permute the polygons Zi before indexing, using an arbitrary but fixed
permutation Π, we can obtain the same high recall results even for convex
polygons, which had the lowest recall rates without permutations.

This paper is an experimental report of a previous theoretical paper [7]. We
reproduce here the mains results to make this contribution self-contained. The
experimental parts, not reported before, corresponds to numerals 4 and 5 above.
In particular, using the nearest neighbor search, or k-nearest neighbor search
when we expect multiple matches for the query polygon is new. In the previous
paper, we derived precise bounds, also discussed for a complete presentation,
where there was the need for a precise maximum radius. This radius depends
on the polygon as well as the amount of noise. Each polygon has associated
a maximum allowed noise, posing difficulties for indexing, as convex polygons
are more sensitive to noise. We show experimentally in this paper that we can
achieve maximum tolerated noise for most polygons by randomly permuting the
polygon vertex with a fixed permutation.

1.3 Related work

Before matching polygons in a natural scene, it is necessary to detect them. In
general, reconstructing an arbitrary polygon from partial readings is NP-hard
[5]; although some instances can be solvable in practice, such as detecting reg-
ular polygons [13, 4]. However, shapes and contours can be obtained from other
sources, and sometimes the problem consists in measuring if a set of points can
be put in correspondence with a nominal polygon; this has applications in man-
ufacturing inspection and city planning [10]. Two arbitrary simple polygons can
be compared using several notions of distance [2], being the more general the
Fréchet distance as described in [6], which can be computed in polynomial time.
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ϕj

Fig. 1. Application of the invariant ϕj to similar polygons gives the same complex
number. For similar polygons plus noise, it gives complex numbers that are close under
euclidean distance. For not similar polygons it gives different complex numbers.
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Some heuristics have been defined for other simpler realizations of the distance
between polygons. One approach is to consider the polygon as a (circular) string
with either the edges [17] or the vertices as symbols [11]; this allows efficient
comparison of a shape against a nominal polygon allowing insertions and dele-
tions of vertices. Another efficient metric is discussed in [1]. In [15] are discussed
algorithms for the specific case of polygon matching upon congruency, including
the case of partial matches. A more comprehensive discussion of the problem of
shape matching and several efficient approaches are discussed in the survey [18].

To the best of our knowledge, there is no prior attempt to solve the in-
dexed polygon matching discussed in this paper. The metrics mentioned above
are designed to compare pairs of polygons and do not contemplate the problem
of indexed matching. Moreover, any function ϕj holds more information than
a metric because ϕj endows the space of polygons with a two-dimensional co-
ordinate system (complex numbers are two-dimensional). In contrast, a metric
can only be considered a one-dimensional coordinate because each polygon is
associated with a real number, which is the distance to a fixed polygon.

1.4 Acknowledgments

We want to thank David Mount for carefully reading an early version of this
manuscript and providing precious suggestions. We are grateful to Tomas Auer
and Martin Held[3] who maintain a repository for polygon generation. We used
their software to generate polygons of various types for our experiments.

2 Invariants

2.1 Similarity invariants for polygons

In what follows, we shall fix an integer n ≥ 3.

Definition 1. For any integer j = 1, . . . , b(n − 1)/2c we consider the function
ϕj : Cn → C ∪ {∞} given by

ϕj(z1, . . . , zn) =

∑n
k=1 λ

jkzk∑n
k=1 λ

−jkzk
,

where λ = e2π
√
−1/n is a nth root of unit.

Proposition 1. ϕj is invariant under the action of orientation-preserving sim-
ilarity transformations on polygons with n vertices; that is, if α, γ ∈ C with
α 6= 0, then

ϕj(αz1 + γ, αz2 + γ, . . . , αzn + γ) = ϕj(z1, z2, . . . , zn).
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Proof.

ϕj(αz1 + γ, αz2 + γ, . . . , αzn + γ) =

∑n
k=1 λ

jk(αzk + γ)∑n
k=1 λ

−jk(αzk + γ)
=

α
∑n
k=1 λ

jkzk + γ
∑n
k=1 λ

jk

α
∑n
k=1 λ

−jkzk + γ
∑n
k=1 λ

−jk =
α
∑n
k=1 λ

jkzk + γ
∑n−1
k=0 λ

jk

α
∑n
k=1 λ

−jkzk + γ
∑n−1
k=0 λ

−jk

α
∑n
k=1 λ

jkzk + γ(λjn − 1)/(λj − 1)

α
∑n
k=1 λ

−jkzk + γ(λ−jn − 1)/(λ−j − 1)
=

α
∑n
k=1 λ

jkzk
α
∑n
k=1 λ

−jkzk
=

∑n
k=1 λ

jkzk∑n
k=1 λ

−jkzk
= ϕj(z1, z2, . . . , zn).

Remarks

Remark 1. The numerator and denominator involved in the definition of ϕj are
the coefficients appearing when Z = (z1, . . . , zn) is expressed in certain basis of
Cn, namely the basis of star-shaped polygons

Ek = ((λk)1, (λk)2, . . . , (λk)n−1, (λk)n), k = 1, 2, . . . , n

([8], [14, proof of Proposition 3]). More precisely, if Z =
∑n
k=1 xkEk, then

ϕ1 =
xn−1
x1

, ϕ2 =
xn−2
x2

, . . . , ϕ(n−1)/2 =
x(n+1)/2

x(n−1)/2
if n is odd,

and

ϕ1 =
xn−1
x1

, ϕ2 =
xn−2
x2

, . . . , ϕ(n−2)/2 =
x(n+2)/2

x(n−2)/2
if n is even.

All the quotients xi/xj satisfy Proposition 1, but only those of the form xn−j/xj
satisfy a more general theorem involving affine transformations as described in
[7].

Remark 2. For Z = (z1, . . . , zn) ∈ Cn the precise form of the coefficients of the
linear combination Z =

∑n
k=1 xkEk is

xk =
1

n

n∑
l=1

λ−klzl

They are precisely the Fourier descriptors or coefficients of the discrete Fourier
transform of Z. This is very handy in our experimental construction.

Remark 3. The function ϕj is well-defined except on

Nj =

{
(z1, . . . , zn) ∈ Cn :

n∑
k=1

λjkzk = 0 =

n∑
k=1

λ−jkzk

}
.

Nj is a (n − 2)-dimensional complex linear subspace with measure zero in Cn.
According to Remark 1, Nj is spanned by {Ek}k 6=j,n−j .
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Remark 4. The level sets ϕ−1j (c) = {(z1, . . . , zn) ∈ Cn : ϕj(z1, . . . , zn) = c}
are (n− 1)-dimensional complex submanifolds with measure zero in Cn because
every point in C ∪ {∞} is a regular value of ϕj , for any j. This follows from

a straightforward calculation which shows that
∂ϕj
∂zk

= 0 implies ϕj = λ2jk. In

this sense, the probability that two randomly chosen polygons Z and W satisfy
ϕj(Z) = ϕj(W ) is equal to zero.

2.2 Cyclic shifts and reversed labeling

Proposition 2. The behavior of ϕj under cyclic shift and reversed labeling is
given by the formulas

ϕj(z2, z3, . . . , zn, z1) = λ−2jϕj(z1, z2, . . . , zn),

ϕj(zn, zn−1, . . . , z2, z1) =
λ2j

ϕj(z1, z2, . . . , zn)
,

for all j = 1, . . . , b(n − 1)/2c. Hence, if Z and W are relabeling of the same
polygon, we have by raising to the nth power the equalities

ϕj(Z)n = ϕj(W )n if the labels have the same orientation, and
ϕj(Z)n = ϕj(W )−n if the labels have the opposite orientation.

(1)

Proof.

ϕj(z2, z3, . . . , zn, z1) =

∑n
k=1 λ

jkzk+1∑n
k=1 λ

−jkzk+1
=

λ−j
∑n
k=1 λ

j(k+1)zk+1

λj
∑n
k=1 λ

−j(k+1)zk+1
= λ−2jϕj(z1, z2, . . . , zn),

where subscript n+ 1 should be taken as 1. Likewise

ϕj(zn, zn−1, . . . , z2, z1) =

∑n
k=1 λ

jkzn+1−k∑n
k=1 λ

−jkzn+1−k
=

λj(n+1)
∑n
k=1 λ

−j(n+1−k)zn+1−k

λ−j(n+1)
∑n
k=1 λ

j(n+1−k)zn+1−k
=

λ2j

ϕj(z1, z2, . . . , zn)
.

2.3 An index for matching polygons

Exact matching of similar polygons Assume that a collection of different
polygons Z1, Z2, . . . , Zm of n edges is given. By a preprocessing step we compute
pairs (`, ϕj(Z`)

n). Assume that a query polygon W is given and that the objec-
tive is to find all the polygons in the collection such that W = f(Z`) for some
unknown similarity transformation f . This corresponds to all the polygons such
that ϕj(Z`)

n = ϕj(W )n or ϕj(Z`)
n = ϕj(W )−n (Propositions 1 and 2). Since

the probability of collision is zero (Remark 4), all the R polygons mapped to
ϕj(Z`)

n or ϕj(Z`)
−n should be similar to the query polygon, and can be found

in O(n+R) operations, where R is the number of polygons mapped to ϕj(Z`)
n

or ϕj(Z`)
−n. Notice that the bound in the running time is time independent of

m, the size of the collection.
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Matching similar polygons under noisy conditions A slightly more gen-
eral setup is when there is an unknown noise function at the matching. The
image of the query polygon is a similarity transformation f plus noise, namely
W = (f(z1+∆z1), f(z2+∆z2), . . . , f(zn+∆zn)). In this case, instead of retriev-
ing just the polygons mapped to ϕj(W )n as above, we retrieve all the polygons
within a certain Euclidean distance of the image of the query. That is, if r is the
tolerance, then we inspect all the polygons such that |ϕj(W )n − ϕj(Z`)n|2 ≤ r.

Proposition 3 below gives a precise bound for the tolerated noise.

Proposition 3. Let Z = (z1, . . . , zn) ∈ Cn \ {0} be a polygon. Consider an
integer j ∈ Z \ n2Z such that

∑n
l=1 λ

−jlzl 6= 0. Let ρ be a positive real number
such that nρ < µ := |

∑n
l=1 λ

−jlzl|. Then for any ∆Z = (∆z1, . . . ,∆zn) with
|∆zk| < ρ, k = 1, . . . , n, we have

|ϕj(z1, . . . , zn)− ϕj(z1 +∆z1, . . . , zn +∆zn)| ≤
2nρ

∑n
l=1 |zl|

µ(µ− nρ)
.

Proof.

ϕj(z1, . . . , zn)− ϕj(z1 +∆z1, . . . , zn +∆zn)

=

∑n
l=1 λ

jlzl∑n
l=1 λ

−jlzl
−
∑n
k=1 λ

jk(zk +∆zk)∑n
k=1 λ

−jk(zk +∆zk)

=

∑n
l=1 λ

jlzl∑n
l=1 λ

−jlzl
−

∑n
k=1 λ

jkzk +
∑n
k=1 λ

jk∆zk∑n
k=1 λ

−jkzk +
∑n
k=1 λ

−jk∆zk

=

∑n
l=1 λ

jlzl
∑n
k=1 λ

−jk∆zk −
∑n
l=1 λ

−jlzl
∑n
k=1 λ

jk∆zk∑n
l=1 λ

−jlzl (
∑n
k=1 λ

−jkzk +
∑n
k=1 λ

−jk∆zk)

=

∑n
k,l=1(λj(l−k) − λj(k−l))zl∆zk∑n

l=1 λ
−jlzl (

∑n
k=1 λ

−jkzk +
∑n
k=1 λ

−jk∆zk)

=
2i
∑n
k,l=1 sin

(
2πj(l−k)

n

)
zl∆zk∑n

l=1 λ
−jlzl (

∑n
k=1 λ

−jkzk +
∑n
k=1 λ

−jk∆zk)
.

(2)

Hence
|ϕj(z1, . . . , zn)− ϕj(z1 +∆z1, . . . , zn +∆zn)|

≤
2
∑n
k,l=1 |zl| |∆zk|

|
∑n
l=1 λ

−jlzl| (|
∑n
k=1 λ

−jkzk| −
∑n
k=1 |∆zk|)

<
2nρ

∑n
l=1 |zl|

|
∑n
l=1 λ

−jlzl|
(∣∣∑n

l=1 λ
−jlzl

∣∣− nρ) .
(3)

Notice that bounds for the noise depend on the frequency response of the
polygon. That is, we cannot input a given tolerance and obtain a proper searching
radius. The maximum noise allowed is intrinsic to the polygon.
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3 Experiments in polygon matching with noise

This section shows the results obtained when we test the algorithm using an
extensive set of polygons of four classes. Figure 2 shows some sample polygons
of the four classes we considered, respectively convex, star-shaped, Jordan, and
general polygons. We have found that the more complex polygons (e.g., general
polygons) are more easily distinguished. We discuss it below.

For evaluating our identification method, we generated a large set of polygons
in each of the four considered classes, each class with 100,000 polygons. The
polygons were generated with integer coordinates in a grid of size 1024 × 768
using the software kindly provided by Martin Held, according to the heuristics
described in [3].

For each polygon Z` in the collection we computed and stored all ξ` =
ϕj(Z`)

n, j = 1, . . . , b(n−1)/2c, and indexed them using a 2d-tree. Each polygon
was mapped to b(n − 1)/2c points in the complex plane. After the mapping,
our polygon collection is transformed to a point collection; each point in the
collection corresponds to a polygon. The 2d-tree is used as an inverted index to
back-link the points to the original polygons.

Fig. 2. Example polygons. Convex, star shaped, simple (Jordan) and general (with
self-intersections).

For querying we took 1,000 polygons in each collection and randomly per-
turbed each vertex with ±r pixels in the x and y coordinates, with 1 ≤ r ≤ 25.
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The resulting polygons were mapped using the same b(n− 1)/2c functions. We
searched for the nearest neighbor of each one of the resulting points in the corre-
sponding collection. Figure 3 show the recall as a function of the noise (measured
in pixels) for various setups. We first notice that using a single, fixed invariant
produces a low recall. Remember that the noise bounds depend on the polygon’s
response to a frequency. Taking all the invariants ϕj for indexing and requir-
ing any one of them to match the nearest neighbor of the query gives excellent
results. Remember, by remark 4, that false positive matches are improbable, al-
though due to noise, false positives are possible. For the plot, we considered the
b(n − 1)/2c candidates, one for each invariant, and checked if this list contains
the matching polygon.
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Fig. 3. Searching for noisy polygons. A graph is displayed for each class of polygons.
The first class was a set of convex polygons, the second was of star shaped polygons, the
third was of simple or Jordan polygons and the fourth class was of polygons without
restrictions. The plots show the recall considering one of the ϕj (NN with 1Pj), all of
them (NN with all Pj) and any of them (contains NN) respectively. Each point in the
plot is the average of 1,000 queries. As the shape is more complex, the identification is
easier.

The lowest recall we obtained was for convex polygons, which is consistent
with the theoretical results because they have the lowest frequency responses.
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On the other hand, general polygons have a higher recall because there will be
at least one high-frequency response. As per the cyclic shifts, recall proposition
2, there was no difference in recall when the query was cyclically shifted. We
experimented with polygons having between 16 and 32 sides. We saw no signif-
icant difference in the plots and only reported the results for 32 sided polygons.
The total searching time is negligible, a few milliseconds in a laptop.

3.1 Fixing recall for convex polygons

Observing the disparate results in recall for convex and general polygons and
knowing the relationship of the performance and the frequency response of the
polygons, we transformed the polygons before storing them. Let Π a random
permutation, fixed beforehand. We applied Π to each one of the polygons before
computing invariants ϕj , ZΠ = (Π(z1), Π(z2), . . . ,Π(zn)). At query time, we
applied the same permutation to the query. With this change, all the indexed
polygons responded equally, obtaining the same recall as generalized polygons.

4 Final remarks

Polygon matching under similarities is a fundamental problem at the core of
many applications. In [9] they define the problem of finding the attitude of
a spaceship, that is, finding which star appears in the objective of a camera.
Stars are codified as polygons, using as vertices the surrounding stars. More
precisely, for each star, the k-nearest stars define a polygon, with the center the
target star. The algorithm in [9] is akin to brute-force. They compute thousands
of perturbations of each polygon to boost the recall, and the corresponding
invariants ϕj defined in [7] are stored with rounded decimals. The query polygon
is searched for by exact matching. Hence if it coincides with one of the stored
perturbations, a match is reported. The above procedure is wasteful; for each
star, there will be a blob of points associated.

Using the heuristics defined herein, we report better recall rates than [9]
by using the (k)nearest neighbors instead of exact searching and the random
permutation before indexing. We store only one complex number, instead of a
blob of points, for each star. The above allows to dramatically reduce space usage
for a star index for spatial navigation.

We plan to use polygon indexing as a building block for robust point set
retrieval under similarities, with applications to image and multimedia retrieval,
computer vision, and robotics.
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of generalized polygons and matching under affine transformations, Comput. Geom.
58 (2016), 60–69.

8. J. Chris Ficher, D. Ruoff, and J. Shilleto, Perpendicular polygons, Amer. Math.
Monthly 92 (1985), no. 1, 23–37.

9. E Antonio Hernández, Miguel A Alonso, Edgar Chávez, David H Covarrubias,
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