
What makes a good movie recommendation?
Feature selection for Content-Based Filtering

Maciej Gawinecki1, Wojciech Szmyd1, Urszula Żuchowicz, and Marcin Walas11

Samsung R&D Institute Poland (SRPOL)
Bora Komorowskiego Street 25C, 31-416 Cracow, Poland

{m.gawinecki,w.szmyd,u.zuchowicz, m.walas}@samsung.com

Abstract. Nowadays, recommendation systems are becoming ubiqui-
tous, especially in the entertainment industry, such as movie streaming
services. In More-Like-This recommendation approach, movies are sug-
gested based on attributes of a currently inspected movie. However, it
is not obvious which features are the best predictors for similarity, as
perceived by users. To address this problem, we developed and evalu-
ated a recommendation system consisting of nine features and a variety
of their representations. We crowdsourced relevance judgments for more
than 5 thousand movie recommendations to evaluate the configurations
of several dozen of movie features. From five embedding techniques for
textual attributes, we selected Universal Sentence Encoder model as the
best representation method for producing recommendations. Evaluation
of movie features relevance showed that summary and categories ex-
tracted from Wikipedia led to the highest similarity on user perceptions
in comparison to other analyzed features. We applied the feature weight-
ing methods, commonly used in classification tasks, to determine optimal
weights for a given feature set. Our results showed that we can reduce
features to only genres, summary, plot, categories, and release year with-
out losing the quality of recommendations.

Keywords: Recommender System · Content-Based Filtering · Feature
Selection · Feature Weighting

1 Introduction

Selecting interesting movies in TV streaming services can be time-consuming for
users due to the increasing amount of available content. Therefore, recommender
systems are utilized broadly to assist users in handling information overload
by suggesting new similar content. Conventional recommendation methods are
classified into Collaborative Filtering (CF), Content-Based Filtering (CBF), and
Hybrid systems, combining both methods. Recommending in CF is based on the
similarity between users’ preferences. In CBF, the retrieval process is driven by
the characteristics of the products, providing items similar to items that the user
selects or liked in the past. In this paper, we focused on the so-called More-Like-
This (MLT) version of CBF recommenders that suggests more content similar



2 M. Gawinecki et al.

to particular items and does not consider user profile. A prerequisite for CBF
is the availability of information about relevant content attributes of the items.
Attributes in the movie domain mostly comprise of structured information, e.g.,
genres, release year, and unstructured information, such as plot. The relevance of
each feature is not obvious in the context of the recommendation system. Typi-
cally, the features are chosen based on their relative usefulness at hand [5,17], not
using some external heuristic, e.g. optimization techniques [19]. In a long run,
using wrong features can lead to inaccurate recommendations and unnecessary
engineering costs, like acquiring a source of data for a feature that does not pay
off.

In this paper, we asked: (1) Which feature representation is most effective?
(2) Which single feature provides the best recommendations? (3) Do we need all
features to get good recommendations? (4) How to combine them to provide the
most relevant recommendations? To answer those questions, we crowdsourced a
large volume of recommendation relevance judgments. We released part of the
collected dataset to the public as a benchmark for evaluation in the movie recom-
mendation domain. For textual features, we compared the quality of recommen-
dations from various novel embedding methods and found the most promising
representations. Then, for all the features, we applied well-known feature se-
lection algorithms to find which ones are relevant and which can be omitted
without losing recommendation performance. We conclude with a summary of
our findings.

2 Related works

There is a substantial body of work on feature selection algorithms for machine
learning and statistics (see [26] for a survey). However, for most algorithms, it
is unclear how to extend them to the case of a recommendation system. For
instance, filter methods use similarity measures such as Spearman Correlation,
to score features based on their information content concerning the prediction
task. Yet, filter methods cannot be naturally extended to recommender systems,
in which the prediction target varies because it depends both on the input item
(selected movie in our case) and on the item under consideration (recommended
movie). Ronen et al. [22] addressed this limitation by scoring not single items
but the similarity between pairs of items.

The more frequent approach for feature selection in recommender systems
is to use domain knowledge and non-systematic trial-and-error method that, as
some authors like Colucci et al. [6] admit, is a naïve eyeball technique. Another
approach is to run online evaluation, where users are asked to assess recommen-
dations from multiple recommenders but are not told where each recommenda-
tion comes from [6,13]. While online evaluation can provide the most credible
results by simulating real conditions and getting real user’s decisions, it does
not scale well for several dozen of possible recommender versions to evaluate. To
address these limitations, recommenders are evaluated in offline setup against
previously collected relevance judgments.



What makes a good movie recommendation? 3

There is a number of public datasets with movie ratings, like Netflix [1] or
MovieLens [10]. However, those datasets describe whether a movie is a good
recommendation for a user rather than for a selected movie. One could argue
that two movies are similar, if they were liked by same users. However, users
tend to like a variety of films, e.g., both comedies and thrillers, and that does
not automatically make them similar. To address this lack, authors of [6,13]
collected two datasets1 from online evaluation of multiple MLT recommenders.
There is a risk that subsequent recommender systems generate recommendations
that are not present in the dataset. The authors address this problem by ignoring
movie pairs without relevance judgments when measuring performance. Research
in information retrieval has shown that such an approach may lead to unfair
performance results: it may happen that top search results should be treated
as relevant but are considered as non-relevant if they were left unjudged, as
reported by Webber et al. in [28]. However, it is impractical to obtain relevance
judgments for all items. Tonon et al. [27] handle this problem by introducing
iterative pooling : for each new retrieval system missing relevance judgments are
obtained and added to the existing dataset.

In the context of movie recommenders, there has been little research on
which features are best at predicting, and the results are often contradictory.
For instance, in offline evaluation Soares et al. [24] found that director fea-
ture alone can provide better recommendations than other features like actors
and genres, while the order starting from the most important (title, genre, cast,
screenwriter, director, and plot) is suggested by Colucci et al. in [6]. There have
been significantly more systematic research on which feature representation pro-
vides best recommendations, especially on representing textual content such as a
movie/book plot. LSI and LDA were evaluated in [2], LSI and Random Indexing
in [16], TF/IDF, Word2Vec, GloVe and Doc2Vec in [25], Word2Vec alone in [18]
and Doc2Vec in [23]. Their results show that the quality of recommendations
depends not only on the topic model used but also on the type and size of data
used for training the embedding model.

3 Recommender system used in experiments

To perform experiments, we developed a prototypical recommendation system
built using the dataset that we collected. Further details are described in this
section.

3.1 Recommending approach

The system used in our experiments was designed to show five unordered rec-
ommendations next to a selected movie on a user’s TV screen. Each movie is
represented as a set of encoded features. The system calculates similarity be-
tween vectors for each feature separately, using suitable distance metrics, and

1 http://moviesim.org/

http://moviesim.org/


4 M. Gawinecki et al.

takes a weighted sum of them. Weights enable us to control how much each
feature contributes to the final output distance.

3.2 Movies Dataset

For experiments, we built the Movies Dataset of over 20K movies that were used
as the input for the recommender. The movies came from intersecting internal
Samsung dataset2 andWikipedia dump3. We also added additional movie ratings
from MovieTweetings4 [8]. For each title we extracted the following attributes:
release year, genre, language, screenwriter, director, summary (mergedWikipedia
introduction page and distributor description), plot (Wikipedia “Plot” section),
category (from Wikipedia categories, e.g., “1990s black comedy films” or “Films
about psychopaths”), and popularity (ratings from IMDb and metacritic.com).
Three attributes in the dataset had incomplete values: language (1.5%), director
(34.0%), and popularity (70.0%). One entry of Movies Dataset is included as
an example in our public repository5.

3.3 Features representations

For each movie attribute in the Movies Dataset, we developed the following
features representations and distance metrics:

– Release year. The intuition is that when a user is looking for an old movie,
we should recommend him/her a similarly old movie. However, when a user
is looking for an old movie, it doesn’t matter if it is from the 1930s or 1950s,
but when looking for more contemporary movies, the subjective difference
between the 2000s and 2020 movies may seem to be much bigger. To express
this intuition, we represent it in a logarithmic form and use the Euclidean
distance metric.

– Language. The expectation is that when a user is looking for a movie orig-
inally spoken in French, they might be interested in other French movies
as well. Since a movie can have more than one language assigned, we used
Jaccard distance to measure language overlap between two movies.

– Genre. For genres, we proposed two representations: a simple sparse la-
bel vector with a Jaccard distance metric and Word2Vec embeddings [11],
trained over genres co-occurring in our dataset. The latter can capture the
perceived similarity between genres, e.g., thriller can be considered to be
more similar to action than to cartoon. We applied cosine distance between
embedding vectors of movie genres, and we took a mean vector over embed-
dings for movies with multiple genres.

2 Accessed on May 25, 2020.
3 https://dumps.wikimedia.org, accessed on August 25, 2020.
4 https://github.com/sidooms/MovieTweetings, accessed on August 27, 2020.
5 https://github.com/la-samsung-poland/more-like-this-dataset/sample_
movie.json

https://dumps.wikimedia.org
https://github.com/sidooms/MovieTweetings
https://github.com/la-samsung-poland/more-like-this-dataset/sample_movie.json
https://github.com/la-samsung-poland/more-like-this-dataset/sample_movie.json


What makes a good movie recommendation? 5

– Category. We extracted about 60K Wikipedia categories. To express simi-
larity between categories we embedded them using Word2Vec with negative
sampling [11]. The network used for machine learning was fed with movie
titles as target words and corresponding categories as context words. We
used the cosine metric to calculate the distance between vectors.

– Director and screenwriter. We suspected that directors and screenwrit-
ers often produce movies of a similar style and topic. To express similarity
between movies we applied sparse vectors with the Jaccard distance.

– Popularity. A user may search for a blockbuster, a movie that is both highly
rated and popular, or a niche movie, appreciated by critics but not so popu-
lar. To support such use cases, we constructed a vector of popularity indices
and averaged ratings among users and critics, where distance is measured
with the cosine metric.

– Summary and plot. For these textual features we experimented with a
number of topic modelling approaches: Doc2Vec [11], LDA [3], LSI with
TF-IDF [7], USE [4]. USE is a transformer-based model pre-trained on a
variety of NLP tasks with large multi-domain datasets. We did not fine-tune
the model on our dataset. Doc2Vec, LSI, LDA models were trained on the
collected plot and summary.

4 Evaluation and feature selection methods

To find meaningful answers to questions posed in this paper we ran experiments
with the tools and methods described below.

4.1 Comparing recommenders performance

We carried out an offline evaluation, where recommendations for a given input
movie are compared against ground truth ratings (relevance judgments). For
input movies, we have manually selected 153 movies from Movies Dataset (de-
scribed in Section 3.2). We strove to achieve high diversity in content – from
Marvel blockbusters through computer animations, European and Asian art-
house cinema to silent movies. Diversification of evaluation set allows to measure
how recommender system performs for different inputs but also describes par-
tially general diversity of recommender. List of all the movies from Evaluation
Dataset is available publicly6

For each of the selected input movies, a recommender produced five recom-
mendations. Input movies, together with their recommendations, were sent to
annotation for collecting ratings. Given the relevance judgments, we were able
to calculate metrics to assess and compare recommenders with various configu-
rations of features and features weights.

The order of recommendations in our system was irrelevant because they were
displayed in unordered series of tiles. Therefore, using any rank-based metric
6 https://github.com/la-samsung-poland/more-like-this-dataset/blob/main/
evaluation_set.tsv

https://github.com/la-samsung-poland/more-like-this-dataset/blob/main/evaluation_set.tsv
https://github.com/la-samsung-poland/more-like-this-dataset/blob/main/evaluation_set.tsv


6 M. Gawinecki et al.

was pointless. Thus, we decided to measure the performance of the system using
Precision@5 defined as:

Precision@5 =
#true_positives

#true_positives+#false_positives
(1)

Because of the limited annotation budget and lack of agreement between anno-
tators in some cases, we were not able to collect ratings for all possible pairs.
Only explicitly labeled examples were considered during calculations. Hence, the
denominator can sometimes be lower than 5. However, comparing systems us-
ing just this metric could lead to incorrect conclusions due to differences in the
number of rated pairs. For this reason, we introduced another metric, coverage:

Coverage =
#(rated_pairs ∩ generated_pairs)

#generated_pairs
(2)

For instance, coverage of 0.3 means that we know whether recommendation is
good or bad for only 30% of recommendations returned by the recommender. It
would assure us that the two systems were evaluated using a sufficient number
of test examples. Low coverage might lead to erroneous interpretation of results.
Features relevances can be inferred from comparing recommender systems with
different sets of features and features weights.

4.2 Collecting relevance judgments

Evaluating recommender performance requires a binary label that denotes whether
a recommendation is good or bad for the selected movie.

To collect relevance judgments, for each movie pair generated by the recom-
mender, we submitted a rating task to the crowdsourcing system. To simulate
real recommendation context, we started each task with the short introduction:
“Imagine you have been searching for a movie with Smart TV and the TV has
recommended you another one in the ’More-Like-This’ section. Would you be in-
terested in watching the recommended movie, given the movie you were searching
for?”. For both selected and recommended movies, we showed only the infor-
mation that would be present in the recommendation application: movie title,
release year, summary, and poster.

We asked users to rate recommendations using 5-point scale of answers: defi-
nitely interested, rather interested, rather uninterested, definitely uninterested or
don’t know. 3-point scale, applied in similar studies [6,13], may result in losing
some information due to a rounding error [12,20] and thus leave some less known
movie pairs unrated.

Given the fixed budget, annotating all possible movie pairs upfront is imprac-
tical. To control the cost we employed iterative pooling [27]. Each time a new
version of a recommender system was tested, we submitted recommendations,
generated and not rated yet, to the crowdsourcing system. We also limited the
number of annotators per movie pair to two. Those two users had to agree about
the rating: whether they rated it positively or negatively. Answers rather inter-
ested and definitely interested were considered a positive rating, while rather



What makes a good movie recommendation? 7

uninterested and definitely uninterested were considered a negative one. Only in
case of disagreement, the movie pair was submitted for the third annotation to
decide. If that did not help, i.e., when an annotator answered with don’t know,
the movie pair was not included in the relevance judgments. This strategy offered
us a good trade-off between annotation cost and confidence in ratings.

4.3 Selecting optimal weights

To assess the relevance of features and to tune the recommender, we proposed
three methods for determining an optimal set of features’ weights. Since the
order of recommendations is irrelevant, we can describe searching for nearest
neighbors as a binary classification problem where the objective is to classify
a pair of movies as good or bad recommendations. We experimentally showed
that coefficients obtained by feature selection and classification algorithms can
be used as weights in CBF. Input to algorithms were movie pairs represented by
vectors of normalized distances between consecutive features of both movies.

Since there is no universal feature weighting method that works for all fea-
tures configurations, we tried three different methods:

– Coefficients of a linear classifier such as Support Vector Machine (SVM) with
linear kernel, perceptron, or logistic regression. In [15] similar procedure was
developed for a classification task. This set of models works analogously to
the presented recommender system. A linear combination of features is cal-
culated. In the classification case, the calculated sum is compared against
a fixed threshold to determine an output label. In our system, a linear com-
bination is interpreted as a distance between movies in a pair, and only five
movies closest to the input are selected. We used SVM as a representative
of linear classifiers based on results from our initial experiments.

– ReliefF [21], a filter method for feature selection and feature weighting [29].
– Mean Decrease Impurity (MDI) [14] of variables in a random forest classifier.

4.4 Finding the best set of features

Our goal was to find a subset of features that are most relevant in predicting the
target variable, i.e., whether a recommendation is good or bad. Evaluating rec-
ommendations for all possible feature subsets (2N ) is intractable. To address the
problem, we used Recursive Feature Elimination (RFE) with SVM, originally
proposed by [9] for feature selection in classifiers. RFE is a greedy algorithm
that helps find a subset of a given size by recursively removing the least impor-
tant features (i.e., the least informative during SVM classification). To find an
optimal size of a subset, we combined RFE with 10-fold cross-validation. Since
we optimized our recommender towards high precision rather than high recall,
we used precision as a scoring function. For the same reason, we penalized the
SVM training cost function for returning bad recommendations (false positives
errors) more (4 times) than for missing good ones (false negative errors). Once
we found an optimal features subset, we trained SVM over it and treated its



8 M. Gawinecki et al.

coefficients as optimal weights for our recommender. Finally, we validated those
weights with a recommender against relevance judgments.

5 Experimental results

As a result of crowdsourcing, we collected 15334 annotations from 33 annotators
for 6901 movie pairs. Out of those we got 5500 rated movie pairs (for the remain-
ing ones users could not agree about the rating). The split between good and
bad recommendations is 2988/2512 (54%/46%). We published 30% of collected
ratings as MoreLikeThis dataset7.

5.1 How to represent features effectively?

We reviewed the set of representation methods for the following features: genre,
plot, and summary. We asked how the chosen representation affects recommen-
dation performance, as different techniques have their own characteristics. In the
first experiment, we evaluated how those selected features work together with
other features (features collectively). The results of experiments are depicted in
Table 1.

For plot and summary we tested the following document representation mod-
els: Doc2Vec [11], LDA [3], LSI with TF-IDF [7], and USE [4]. We collected rat-
ings for output recommendations achieving coverage of about 0.6 for each model,
which was acceptable for comparison of precision. The results showed that USE
and Doc2Vec models provide higher precision (0.62 and 0.60 respectively).

In the second part of the experiment we analysed only textual features –
plot and summary – evaluating representations in isolation as the single-feature
recommender. We narrowed methods in this analysis to two the most promising
semantic models – USE and Doc2Vec. Sufficient coverage was obtained only for
analysis of summary feature (0.64 for Doc2Vec and 0.72 for USE). For remaining
configurations (plot, and summary+plot), the gap in coverage between the two
represenations was too be big to make any conclusions about them. Still, higher
precision for USE in case of summary demonstrates that it outperforms Doc2Vec
even though USE was trained on external data and was not even fine-tuned to
our Movies Dataset.

All of the above confirms that transformer-based models pre-trained on large
datasets are more powerful and generalizable.

Precision for Word2Vec embedding method applied to genre data was rela-
tively lower than sparse vector (Table 1). Using not only exact genre matches,
but also similar ones, probably increased the number of false positives.

Overall, our experiments showed that representation strategies can play a
crucial role in the final recommendations.

7 https://github.com/la-samsung-poland/more-like-this-dataset

https://github.com/la-samsung-poland/more-like-this-dataset


What makes a good movie recommendation? 9

Table 1: Performance of recommenders with various representations for a se-
lected feature: (1) features collectively, (2) features in isolation. Weights were
split evenly across features. In the first step, for uninvestigated features we used
encoding methods depicted in 3.3, specifically USE representation for plot and
summary, and Word2Vec representation for genre.

Feature(s) Method Precision Coverage
Features collectively

Summary
+Plot

Doc2Vec 0.78 0.60
USE 0.81 0.62
LDA 0.80 0.57
LSI 0.79 0.56

Genres
Simple
Vector

0.86 0.62

Word2Vec 0.81 0.62
Features in isolation

Summary
Doc2Vec 0.45 0.64
USE 0.86 0.72

Plot
Doc2Vec 0.52 0.19
USE 0.71 0.71

Summary
+Plot

Doc2Vec 0.56 0.24
USE 0.90 0.61

5.2 Which features are relevant?

In the next experiments, we used only selected representations and distance met-
rics: the logarithm version of release year with the Euclidean distance, averaged
Word2Vec vector with the cosine distance for genre, a vector of metrics with the
Euclidean distance for popularity, USE model for textual features plot and sum-
mary, and sparse vectors with the Jaccard distance for director, screenwriter,
and language features.

The main goal of this section is to gain an initial insight into the relevance of
particular features. We ranked those features from the most relevant using the
weight optimization procedure described in Section 4.3. Results are summed up
in Figure 1.

All three algorithms are almost consistent – summary, category, plot, and
genre were important according to all of them. Two of these features, summary
and category, contain a wide range of information, e.g., brief storyline, cast,
awards, or influence of the film on popular culture. We suspected them to be
correlated with each other and with remaining features. Then, we looked for
an optimal subset of features analyzing whether they are redundant (described
in Section 5.4).

We evaluated recommender with three different sets of weights obtained by
SVM, ReliefF and MDI, and one set of equal weights. Results are available in



10 M. Gawinecki et al.

ca
te
go
ry

di
re
ct
or

ge
nr
e

la
ng
ua
ge pl
ot

po
pu
la
rit
y

sc
re
en
wr
ite
r

su
m
m
ar
y

re
le
as
e 
ye
ar

feature

−0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

 e
ig
ht

SVM
ReliefF
MDI

Fig. 1: Normalized (sum up to 1) weights for each feature obtained by SVM,
ReliefF, and MDI.

Table 2. Coverage for each recommender was above 0.60 which allowed us to
make further conclusions.

Precisions of recommenders with weights optimized by all methods are sim-
ilar to each other and exceptionally higher than in the equal-weights scenario.
That confirms the effectiveness of SVM, ReliefF, and MDI as weights selection
algorithms.

Table 2: Evaluation of the recommender with weight obtained by SVM, ReliefF
and MDI compared with setting all weights to the same value.

Precision Coverage
SVM 0.92 0.65
ReliefF 0.91 0.63
MDI 0.90 0.66
Equal weights 0.81 0.62

Some features turned out to be more informative, i.e., they are better at
discriminating good recommendations from bad ones. However, we do not know
which provide better recommendations.



What makes a good movie recommendation? 11

5.3 Which single feature provides best recommendations?

To answer this question, we evaluated six recommender systems, each consisting
of a single movie feature. We intentionally did not evaluate recommendations
created by language, popularity and release year features. By common sense,
we assumed that these features might be useful but cannot create standalone
systems. Performance of single-feature recommenders is shown in Table 3.

Table 3: Precision and coverage for single-feature recommenders.

Precision Coverage
Plot 0.72 0.70
Genre 0.77 0.39
Category 0.87 0.53
Summary 0.87 0.72
Director 0.64 0.37
Screenwriter 0.65 0.35

The results confirmed our findings from Section 5.2: category and summary
are great standalone features while plot and genre give slightly worse but still
decent performance.

5.4 Do we need all features to get good recommendations?

We used RFE with cross-validation (Section 4.4) to find the smallest subset
of features. The results are shown in Figure 2. It can be observed that RFE
classification precision for five and nine features is almost the same (0.828 and
0.820 respectively). It demonstrates that we can remove four features and still
get the best recommendations for a given setup. The best subset contains the
following features (together with their optimal weights): genre (0.37), plot (0.20),
summary (0.20), categories (0.20), and release year (0.03). The validation of
this configuration with a recommender got 0.93 precision for 0.55 coverage. The
validation of configuration with all features got the precision of 0.92 as well with
coverage of 0.65.

If we compare the recommendation performance of this combination with the
performance of single features (see Section 5.3), we can see that no feature alone
can achieve such a high precision. The best single features, summary or category,
have precision of 0.87. The results also indicate that it pays off to engineering
features with more complex representations (summary, plot, and categories).

The remaining features: director, languages, popularity and screenwriter were
found redundant.



12 M. Gawinecki et al.

2 4 6 8
Number of features selected

0.0

0.2

0.4

0.6

0.8

1.0

Cl
as
sif

ica
tio

n 
Pr
ec

isi
on

0.000 0.000

0.520

0.809 0.828 0.820 0.821 0.823 0.820

Fig. 2: The results for RFE with SVM and 10-fold cross-validation over relevance
judgments.

5.5 Are relevance judgments credible?

We asked whether collected relevance judgments were credible and consistent.
We pushed random movie pairs and regular recommendations to the same

group of annotators. The distributions of ratings for both recommendation types
are presented in Figure 3. It showed that random recommendations were mostly
rated as bad ones, whereas regular recommendations as good ones. That is in
line with our intuition and demonstrates that our annotators provide credible
ratings. That gives us trust in the results of the experiments.

de
fin

ite
ly

in
te

re
st

ed

ra
th

er
in

te
re

st
ed

ra
th

er
un

in
te

re
st

ed

de
fin

ite
ly

un
in

te
re

st
ed

do
n'

t
kn

ow

Rating

0

100

200

300

400

500

Nu
m

be
r o

f u
se

r r
at

in
gs

2

95

302

467

52

233

304

214

87
50

Random recommendations
Regular recommendations

Fig. 3: Distribution of user ratings for regular and random recommendations in
the first round of ratings collection.

Additionally, we checked whether users rated the same movie pair consis-
tently and found that 70% of movie pairs had a complete agreement, i.e., all
annotators agreed that a recommendation is good or bad. Remaining movie
pairs had 2

3 agreement. This demonstrates that ratings were relatively consis-
tent across users.



What makes a good movie recommendation? 13

6 Conclusions

In this paper, we asked what features of a movie make it a good recommendation
for another movie.

We researched methods for feature representation. We found that various
representation algorithms applied to the same movie attribute may result in
different recommendation performance. For instance, changing movie summary
or plot representations from Doc2Vec or LSI into Universal Sentence Encoder
can increase recommendation precision significantly.

We also studied which single feature is most informative and can provide
the best recommendations. We found that users rate recommendations gener-
ated solely from a movie summary or category higher than when using other
features. We also found that combining these features with others improves rec-
ommendations quality, but not significantly. This suggests there is potential for
single-feature recommenders if the feature is represented properly.

We also looked for the smallest set of features with high recommendation
performance. We found that using only five features (genres, plot, summary,
categories, and release year) we can provide as good recommendations as using
all nine proposed features. Surprisingly, other features such as movie director,
screenwriter, or language, often mentioned in the literature [6,13], were found
redundant. Removing those features can shorten recommender response time,
save storage space, and cut costs of acquiring data for those features.

Machine learning has a long-standing list of methods for feature ranking,
weighting, and selection. We have shown that by representing a recommenda-
tion task as a classification problem, we can apply those methods for content-
based recommenders. We also collected and released a large dataset of movie-
recommendation ratings. We hope the dataset will encourage and enable future
research in this domain.

Acknowledgments

We would like to thank Wojciech Smołka for his substantial help in implementing
the recommender and Kaja Pękala for work in building datasets. We are also
grateful to Artur Rogulski for editorial support.

References

1. Bennett, J., Lanning, S., et al.: The Netflix Prize. In: Proceedings of KDD cup and
workshop. vol. 2007, p. 35. New York (2007)

2. Bergamaschi, S., Po, L.: Comparing LDA and LSA topic models for content-based
movie recommendation systems. In: International Conference on Web Information
Systems and Technologies. pp. 247–263. Springer (2014)

3. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet Allocation. Journal of Machine
Learning Research 3(Jan), 993–1022 (2003)



14 M. Gawinecki et al.

4. Cer, D., Yang, Y., Kong, S.y., Hua, N., Limtiaco, N., John, R.S., Constant, N.,
Guajardo-Cespedes, M., Yuan, S., Tar, C., et al.: Universal Sentence Encoder.
arXiv preprint arXiv:1803.11175 (2018)

5. Chen, H.W., Wu, Y.L., Hor, M.K., Tang, C.Y.: Fully content-based movie recom-
mender system with feature extraction using neural network. In: 2017 International
Conference on Machine Learning and Cybernetics (ICMLC). vol. 2, pp. 504–509.
IEEE (2017)

6. Colucci, L., Doshi, P., Lee, K.L., Liang, J., Lin, Y., Vashishtha, I., Zhang, J., Jude,
A.: Evaluating Item-Item Similarity Algorithms for Movies. In: Proceedings of the
2016 CHI conference extended abstracts on human factors in computing systems.
pp. 2141–2147 (2016)

7. Deerwester, S., Dumais, S., Landauer, T., Furnas, G., Beck, L.: Improving
information-retrieval with latent semantic indexing. In: Proceedings of the ASIS
Annual Meeting. vol. 25, pp. 36–40 (1988)

8. Dooms, S., De Pessemier, T., Martens, L.: Movietweetings: a Movie Rating Dataset
Collected from Twitter. In: Workshop on Crowdsourcing and Human Computation
for Recommender systems, CrowdRec at ACM RecSys. vol. 2013, p. 43 (2013)

9. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene Selection for Cancer Classifi-
cation using Support Vector Machines. Machine Learning 46(1-3), 389–422 (2002)

10. Harper, F.M., Konstan, J.A.: The MovieLens Datasets: History and Context. ACM
Transactions on Interactive Intelligent Systems (TiiS) 5(4), 1–19 (2015)

11. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In:
International Conference on Machine Learning. pp. 1188–1196 (2014)

12. Lehmann, D.R., Hulbert, J.: Are Three-Point Scales Always Good Enough? Journal
of Marketing Research 9(4), 444–446 (1972)

13. Leng, H., De La Cruz Paulino, C., Haider, M., Lu, R., Zhou, Z., Mengshoel, O.,
Brodin, P.E., Forgeat, J., Jude, A.: Finding Similar Movies: Dataset, Tools, and
Methods (2018)

14. Louppe, G., Wehenkel, L., Sutera, A., Geurts, P.: Understanding variable impor-
tances in forests of randomized trees. In: Advances in Neural Information Process-
ing Systems. pp. 431–439 (2013)

15. Mladenić, D., Brank, J., Grobelnik, M., Milic-Frayling, N.: Feature selection using
linear classifier weights: interaction with classification models. In: Proceedings of
the 27th Annual International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval. pp. 234–241 (2004)

16. Musto, C., Semeraro, G., de Gemmis, M., Lops, P.: Learning Word Embeddings
from Wikipedia for Content-based Recommender Systems. In: European Confer-
ence on Information Retrieval. pp. 729–734. Springer (2016)

17. Nasery, M., Elahi, M., Cremonesi, P.: Polimovie: a feature-based dataset for rec-
ommender systems. ACM (2015)

18. Nguyen, L.V., Nguyen, T.H., Jung, J.J.: Content-Based Collaborative Filtering
using Word Embedding: A Case Study on Movie Recommendation. In: Proceedings
of the International Conference on Research in Adaptive and Convergent Systems
(ACM RACS). pp. 96–100. ACM (2020)

19. Odić, A., Tkalčič, M., Tasič, J.F., Košir, A.: Predicting and Detecting the Rele-
vant Contextual Information in a Movie-Recommender System. Interacting with
Computers 25(1), 74–90 (2013)

20. Preston, C.C., Colman, A.M.: Optimal number of response categories in rating
scales: reliability, validity, discriminating power, and respondent preferences. Acta
Psychologica 104(1), 1–15 (2000)



What makes a good movie recommendation? 15

21. Robnik-Šikonja, M., Kononenko, I.: An adaptation of Relief for attribute estimation
in regression. In: Machine Learning: Proceedings of the Fourteenth International
Conference (ICML’97). vol. 5, pp. 296–304 (1997)

22. Ronen, R., Koenigstein, N., Ziklik, E., Nice, N.: Selecting content-based features for
collaborative filtering recommenders. In: Proceedings of the 7th ACM Conference
on Recommender Systems. pp. 407–410 (2013)

23. Singla, R., Gupta, S., Gupta, A., Vishwakarma, D.K.: FLEX: A Content Based
Movie Recommender. In: International Conference for Emerging Technology (IN-
CET). pp. 1–4. IEEE (2020)

24. Soares, M., Viana, P.: Tuning metadata for better movie content-based recommen-
dation systems. Multimedia Tools and Applications 74(17), 7015–7036 (2015)

25. Suglia, A., Greco, C., Musto, C., De Gemmis, M., Lops, P., Semeraro, G.: A Deep
Architecture for Content-Based Recommendations Exploiting Recurrent Neural
Networks. In: Proceedings of the 25th Conference on User Modeling, Adaptation
and Personalization. pp. 202–211 (2017)

26. Tang, J., Alelyani, S., Liu, H.: Feature Selection for Classification: A Review. Data
classification: Algorithms and Applications p. 37 (2014)

27. Tonon, A., Demartini, G., Cudré-Mauroux, P.: Pooling-based continuous evalua-
tion of information retrieval systems. Information Retrieval Journal 18(5), 445–472
(2015)

28. Webber, W., Park, L.A.: Score adjustment for correction of pooling bias. In: Pro-
ceedings of the 32nd International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval. pp. 444–451 (2009)

29. Wettschereck, D., Aha, D.W., Mohri, T.: A Review and Empirical Evaluation of
Feature Weighting Methods for a Class of Lazy Learning Algorithms. Artificial
Intelligence Review 11(1-5), 273–314 (1997)


	What makes a good movie recommendation? Feature selection for Content-Based Filtering

