
Similarity Search for an Extreme Application:
Experience & Implementation

1Vladimir Mic (B),2Tomáš Raček, 2Aleš Křenek, and 1Pavel Zezula ?

1Faculty of Informatics, Masaryk University, Brno, Czech Republic
2Institute of Computer Science, Masaryk University, Brno, Czech Republic

xmic@fi.muni.cz

Abstract. Contemporary challenges for efficient similarity search in-
clude complex similarity functions, the curse of dimensionality, and large
sizes of descriptive features of data objects. This article reports our ex-
perience with a database of protein chains which form (almost) metric
space and demonstrate the following extreme properties. Evaluation of
the pairwise similarity of protein chains can take even tens of minutes,
and has a variance of six orders of magnitude. The minimisation of a
number of similarity comparisons is thus crucial, so we propose a generic
three stage search engine to solve it. We improve the median searching
time 73 times in comparison with the search engine currently employed
for the protein database in practice.

Keywords: Similarity search in metric space · efficiency · distance dis-
tribution · dimensionality curse · extreme distance function

1 Introduction

The similarity search is quite well developed for traditional domains like texts,
images, videos, and many of their sub-domains like photos of human faces and
irises. Contemporary challenges can be seen in complex and quickly developing
data domains studied within interdisciplinary research. This article describes our
experience with the similarity search in protein chains. However, apart of the
similarity (distance) function which is domain specific, we approach the problem
in a generic way, as a similarity search with difficult distance distribution and
expensive distance computation.

We address the search in the worldwide Protein Data Bank (PDB, [4]), specif-
ically in its European version (PDBe) [2] which contains about 500,000 protein
chains, and tens of thousands are added every year. The protein chain is a long
sequence of amino acids connected with chemical bonds, entangled into a com-
plex 3D shape (see Fig. 1 with an example). The 3D shape of a protein chain is

? V. Mic and P. Zezula – This research was supported by ERDF ”CyberSecurity,
CyberCrime and Critical Information Infrastructures Center of Excellence” (No.
CZ.02.1.01/0.0/0.0/16 019/0000822). Computational resources were supplied by the
project ”e-Infrastruktura CZ” (e-INFRA LM2018140) provided within the program
Projects of Large Research, Development and Innovations Infrastructures.

2 Vladimir Mic, Tomáš Raček, Aleš Křenek and Pavel Zezula

Fig. 1: 3D shape of a protein (PDB ID: 1L2Y) with a single chain. The green
ribbon built upon the CA atoms presents a simplification of a complex shape of
the protein chain. (Balls = atoms, sticks between them = bonds)

sufficiently described by coordinates of carbon atoms of the chain backbone – the
alpha carbons (CA). Consequently, the similarity of two protein chains can be
assessed by finding matching pairs of CA atoms, aligning them in 3D Euclidean
space in the best possible way, and computing their distances.

Searching for protein chains with similar 3D structure is of utmost impor-
tance, since similar proteins are likely to have a similar biological function. The
current similarity search [18] employed at the PDBe database [2] is slow as it
does not use any index. Instead, it scans the whole dataset, and the distance
computation is skipped just if the sizes of compared chains are as different as
they prevent the chains from being similar.

An efficient protein chains search is very challenging for several reasons:

– sizes of descriptors of protein chains vary by two orders of magnitude,
– computation times of chains similarity vary by six orders of magnitude,
– the distribution of protein chains distances is extremely skewed, making the

similarity search difficult,

These features make an efficient generic similarity search even impossible for
some query objects.

This article presents the novel search engine that runs a three-step gradual
search and is available at https://similar-pdb.cerit-sc.cz. While all search tech-
niques have been published in the past, we elaborate on their novel combination
within a search engine to maximize user contentment. We define and justify our
design choices to maximize the search speed and achieve top search quality.

The article is organised as follows. The similarity of protein chains and chal-
lenges of the search are described in Sec. 2. Sec. 3 describes our approach to
build the search engine that maximises the user satisfaction, Sec. 4 summarizes
our experiments and Sec. 5 provides conclusions of the article.

2 Similarity of Protein Chains

To formalise a pairwise similarity of protein chains, we use the metric space
(D, d) defined by the data domain D and the distance function d : D×D 7→ R+.

Similarity Search for an Extreme Application: Experience & Implementation 3

(a) In number of CA atoms (b) In kB on a disk

Fig. 2: Sizes of protein chains – all 0.5 million chains are sorted according to
their size, and x-axis depicts their order

The interpretation is that the bigger the distance, the less similar chains, and
distances meet the properties of non-negativity, symmetry, identity, and triangle
inequality [21]. This article describes the search for the most similar protein
chains to an arbitrary given q ∈ D in the dataset X ⊂ D which consists of
495,085 protein chains from the PDBe database [2]. A snapshot was taken in
September 2020.

2.1 Properties of Descriptors

The pairwise similarity of complex objects, e.g., multimedia, is not usually evalu-
ated directly using the raw data. Instead, the characteristic features (descriptors)
are extracted to describe objects from a specific perspective. Most of the contem-
porary descriptors have a fixed size which brings advantages for their processing.
Especially, distances of descriptors are evaluated in almost the same time.

Descriptors which are sufficiently rich to express the 3D shape of protein
chains tend to be of size that follows the size of chains. Big variance of descriptors
sizes causes extreme differences in distance computation times [8]. Fig. 2a depicts
the number of CA atoms in all 495,085 chains o ∈ X after dropping extremely
small chains, i.e., with less than 10 CA atoms. This is a common practice as such
chains are biologically irrelevant. The median protein chain size is 207 CA atoms,
but 0.97 % of chains are bigger than 1,000 CA atoms, and 0.03 % of them are
bigger than 4,000 CA atoms. Fig. 2b depicts the size of protein chains on SSD,
which is varying from 4 kB to 248 kB with a median 16 kB. The total size of the
dataset is 8.2 GB. The variance of protein chain size has important consequences
for assessing their similarity, as we discuss in the following section.

2.2 Similarity Score

There is no general agreement on a universal measure of the protein chain sim-
ilarity [20, 19, 8]. We follow the method [10] implemented in the current search

4 Vladimir Mic, Tomáš Raček, Aleš Křenek and Pavel Zezula

service of PDBe, which is based on the Qscore:

Qscore(o1, o2) =
N2
align(

1 + (RMSD/R0)2
)
·N1 ·N2

(1)

where N1, N2 are numbers of CA atoms in chains o1, o2, R0 is an empirical
constant (3 �A = 3× 10−10 m), and Nalign is the size of subset of CA atoms from
both chains which are aligned on each other (by shifting and rotating in 3D
space) to minimize their root mean square distance (RMSD), which is defined:

RMSD =

√√√√Nalign∑
i=1

δi/Nalign

where δi is the actual distance (in 3D Euclidean space) between corresponding
CA atoms.

The alignment and RMSD computation is fairly easy [9] – the difficult part
is the choice of CA subsets to minimize Eq. 1. Systematic search of all possible
subsets is practically impossible due to its O(2N) complexity, therefore heuristics
must be use. We use the heuristic of [11] as the current PDBe search. Review of
protein alignment algorithms in [8] concludes that virtually all modern methods
follow the pattern of minimizing some metric (the score) over all possible subsets
of residues (i.e. 1:1 with CA), hence they have to overcome the same complexity
problem, and they are comparable in speed.

2.3 Transformation of Qscores to Distances

The range of the Qscore is [0, 1], so we can easily transform it to the distance:

d(o1, o2) = 1−Qscore(o1, o2) (2)

This function is not a metric distance function due to the imperfection of the
heuristic that estimates the Qscore. We examined 250 million pairs d(o1, o2),
d(o2, o1) to reveal that they are equal just in 86,8 % of cases. Differences d(o1, o2)−
d(o2, o1) are rather small: 96.3 % of pairs differ by at most 0.01, and 99.7 % differ
up to 0.05. These differences cause violations of the triangle inequality rule, and
thus the similarity search based on the filtering by triangle inequalities intro-
duces false negatives errors. While these imperfections could be almost fixed by
a double distance computation: dm = min

(
d(o1, o2), d(o2, o1)

)
, it does not pay

off due to the complexity of distance evaluations.
Small violations of metric postulates motivate us to use techniques based on

pivot permutations since they are robust enough to deal small violations of met-
ric postulates. Pivot permutation based techniques use just the order of several
closest reference chains (pivots) to each chain to approximate its position in a
space [6, 1, 16]. Usage of this type of techniques has an important connotation
with the Qscore-to-distance transformation given by Eq. 2. Many transforma-
tions of a score to distance exist, and they usually swap the order:(

Qscore(o1, o2) < Qscore(o2, o1)
)

=⇒
(
d(o1, o2) > d(o2, o1)

)
(3)

Similarity Search for an Extreme Application: Experience & Implementation 5

Fig. 3: Distance density

Fig. 4: Histogram of sampled distances with the logarithmic scale of y-axis

Different score-to-distance transformations just change the distribution of dis-
tances – see e.g. the convex transforms of distances [5, 7, 17]. Ordering of the
closest pivots to an arbitrary given chain o ∈ D is, however, the same for all
score-to-distance transformations that meet Eq. 3. It is thus meaningless to elab-
orate on a more sophisticated Qscore-to-distance transformation, if we always
use the pivot-permutation-based techniques to search the protein chains.

Beside the solutions described in this article, we also tried the filtering based
on triangle inequalities. It is ineffective due to the dimensionality curse described
in the following section. We also tried to apply convex transforms to the distance
function given by Eq. 2. We observed a small ratio of triangle violations which,
however, leads to an inadequate false reject rate despite a slow searching.

2.4 Curse of Dimensionality

The efficiency of the similarity search in complex data suffers from the “curse
of dimensionality”: The volume of the searched space quickly increases with
increasing distances of nearest neighbours to query chain q. The efficiency of the
similarity search thus decreases. Besides, the efficient pruning of the searched
dataset is getting harder with decreasing variance of distances d(q, o), o ∈ X.
Fig. 3 illustrates the density of the distance function defined by Eq. 2 – the curve
is made of a sample of million distances d(o1, o2), o1, o2 ∈ X. The distribution of
distances is as skewed, as 98.86 % of distances are bigger than 0.8, and 89.8 % of
them are bigger than 0.9. The variance of distances is just 0.002. The k-nearest
neighbours (kNN) queries searching for k objects o ∈ X with minimum distances
d(q, o) thus cannot be evaluated efficiently in practice for query chains q ∈ D
that have kth nearest neighbour in a large distance.

6 Vladimir Mic, Tomáš Raček, Aleš Křenek and Pavel Zezula

Fig. 5: The extreme times of distance computations

The protein chain descriptors are, however, actual 3D models of protein
chains, and the distance function directly expresses their best alignment. The
distance of chains thus well corresponds to the perceived similarity of protein
chains – which often is not a case of contemporary metric space similarity models
with descriptors from neural networks. The searching radius 0.5 thus figures an
acceptable limitation for practitioners searching protein chains, since more dis-
tant chains are always too dissimilar. We thus focus on the searching for chains
o ∈ X that are within distance d(q, o) ≤ 0.5, and we consider at most k = 30
of them. Similarity queries in this article are meant mainly as the 30NN query
limited by range 0.5. In the web application, we allow redefining the k value
arbitrarily, but the maximum searching radius is 0.7 to basically limit the query
execution times.

Fig. 4 illustrates the distribution of the distances with the logarithmic scale of
the y-axis. This plot depicts the same curve as Fig. 3, but bins of the width 0.01
are used to create the histogram of distances for which the range of the y-axis
can be meaningfully depicted. The figure reveals that there are protein chains
within small distances, and thus the similarity search with a limited range, e.g.,
0.5, can be meaningful. This is experimentally confirmed in Sec. 4.

2.5 Distance Function Complexity

We evaluate the distance of protein chains by a heuristic [11] that estimates the
Qscore. Its evaluation is more efficient than the precise Qscore evaluation, but
still, it has a complexity O(N1 ·N2) where N1, N2 are the chain sizes. Therefore
the distance computation time may explode if two extremely big protein chains
are compared – see Fig. 2a with the protein chain sizes. Fig. 5 illustrates the
extreme times of distance computations. These data are gathered from our on-
line running search engine which temporarily stores all distances evaluated in

Similarity Search for an Extreme Application: Experience & Implementation 7

more than 30 ms, and persistently stores those evaluated in more than a second.
Fig. 5 depicts the stored distance computations that relate to 460 different query
chains – please notice that the vast majority of query executions do not store
any distance computation. Axis x and y depicts the times in minutes per one
distance computation and the number of observed distances, respectively. The
first column visualising the distances evaluated below a minute should have a
height of around half a million samples1, and approximately 98 % of these dis-
tance evaluations take less than 30 ms. We observed 5,600 distance computations
that take more than a second and less than a minute. The biggest problem is
the extreme tail of around 0.1 % of distance computations which take minutes
or even tens of minutes, each. Until now, we observed 10 distance computations
which took more than 42 minutes, each.

We tried to skip all these extreme distance evaluations, but this results in an
inability to find even very similar protein chains to some of the biggest query
chains. We decided not to employ such skipping since the newly identified protein
chains in the PDBe database are rather bigger ones, so the quality of the search
engine could be perceived as decreasing in the future. We also observed a moder-
ate Pearson correlation +0.46 between the distance computation times and the
returned distances, which could be a motivation to skip long-lasting distances.
Nevertheless, this correlation seems insufficient and influenced by an inability to
effectively sample the extreme values: for instance, 6 out of 10 observed distance
evaluations that take more than 42 minutes are returning distances smaller than
0.21. These are thus distances between very similar protein chains – see Fig. 4.

The best way to search the protein chains that we found is to minimize the
number of the Qscore evaluations and to cache expensive distance computations.

3 Gradual Similarity Search

We provide users with three gradual query answers of increasing quality to max-
imise the search engine usefulness. We denote these three consecutive parts of
the query execution as phases, and each of them returns a query answer.

– The first phase is always finished in a few seconds since it evaluates just 61
distances d(q, p) of q to pivots. It is usually evaluated below 0.5 s.

– The second phase uses just 489 distances d(q, p) to pivots, including those 61
from the first phase. It takes usually less than 4 s including the first phase.

– The third phase requires a variable number of distance computations with
the median value 702, including those 489 from previous phases. The whole
search usually takes less than 8 s, but with an extreme and necessary tail.

The results of the first and second phases thus add a negligible overhead to the
third phase, since the IDs of chains likely to be similar to q figure more or less
the intermediate result of the query execution.

1 This is an estimation made as an extrapolation from other query executions. Our
search engine evaluates approximately 1,000 distances per average query. The vast
majority of distances is not stored, so we do not know the precise number of distances
evaluated in less than a second.

8 Vladimir Mic, Tomáš Raček, Aleš Křenek and Pavel Zezula

3.1 Data Preprocessing & Sketches

The whole search engine is based on 512 pivots p ∈ D that approximate the
position of each protein chain in a space. We select the pivots uniformly randomly
with respect to the number of CA atoms in protein chains. Specifically, we sort
the chains o ∈ X according to the number of CA atoms, split this list into 512
parts of the same size, and randomly pick one protein chain from each part as a
pivot. All distances d(o, p), o ∈ X between chains o and pivots p are precomputed
and stored in the DB during the data preprocessing.

(a) GHP to set values in one bit (b) Two GHPs to set values in two bits

Fig. 6: The generalised hyperplane partitioning to define bits of sketches of chains

We also create and store the sketches of protein chains. Sketch sk(o), o ∈ X
of protein chain o is a bit-string in the Hamming space ({0, 1}λ, h), and the Ham-
ming distance of sketches approximates the distance of protein chains. We use
the sketching technique denoted here as GHP 50, which is defined in [12]. The
GHP 50 uses a single instance of the generalised hyperplane partitioning [21] to
define each bit of all sketches sk(o), o ∈ X: a given bit of sketches sk(o), o ∈ X
expresses which of the two pivots is closer to o, so λ hyperplanes define sketches
sk(o), o ∈ X of length λ bits – see schema in Fig. 6. Pivot pairs are selected by a
heuristic from a set of pivots to define approximately balanced and low-correlated
bits of sketches sk(o), o ∈ X, i.e., each bit of sketches splits dataset X approx-
imately into halves, and bits of sketches sk(o), o ∈ X have pairwise Pearson
correlations as close to 0 as possible [12].

We use two types of sketches for each protein chain o ∈ X. The small sketches
have length 320 bits, and they are defined using just 61 pivots out of those 512
preselected. We offered 64 pivots to the heuristic to define the hyperplanes, and
it did not use 3 of them. The probable cause is a vast majority of distances 1
between these 3 pivots and protein chains from the dataset X which prevent
all hyperplanes defined by these pivots from defining the balanced bits. The
64 pivots that we offered were selected again uniformly randomly according to
the size from 512 preselected pivots. In practice, sketches maximizes the memory
usefulness iff λ is a multiple of 64, since we use java class BitSet to store sketches
as an array of longs. For the first search phase, sketches of 320 bits created from
64 pivots provide a suitable trade-off between the time needed to create sketches,
and their quality.

Similarity Search for an Extreme Application: Experience & Implementation 9

Table 1: The mapping of distances that we use for sketches of length 1,024 bits
and π = 0.75 (the majority of lines is omitted)

Ham. dist. b orig. dist. t Ham. dist. b orig. dist. t Ham. dist. b orig. dist. t

0 – 144 0 211 0.03 238 0.1

145 0.0003

146 0.0006 222 0.04 270 0.2

147 0.001 223 0.05

. 290 0.3

149 0.002 227 0.06

. 307 0.4

172 0.01 231 0.07

. 340 0.5

199 0.02 236 0.08

. 237 0.09 562 – 1024 1

We also use the large sketches of o ∈ X that have length 1,024 bits and are
defined by 489 out of 512 preselected pivots. Similarly, we offered all 512 pivots
to the heuristic to define large sketches, and it used just some of them. Our
database thus contains the following metadata for each chain o ∈ X: (1) 512
chain-to-pivots distances, (2) small sketch of o, and (3) large sketch of o.

3.2 First Phase of the Query Execution

Following sections describe the query execution, so we consider an arbitrary
given query chain q ∈ D. The first phase of the search evaluates just 61 distances
d(q, p) to create the small sketch of q, and executes the kNN query on the small
sketches. We use just a sequential evaluation of all 495,085 Hamming distances
h(sk(q), sk(o)), o ∈ X; such evaluation takes about 0.15 s (per query), so the exe-
cution time of the first phase is practically given by the evaluation of 61 distances
d(q, p) to create small sketch sk(q). Since none of these pivots is extremely big,
the first phase is evaluated in up to a few seconds for an arbitrary q ∈ D.

The first phase answer consists of IDs of k chains o ∈ X with the small-
est Hamming distances h(sk(q), sk(o)). These IDs are immediately shown in
the GUI, and we start the parallel and asynchronous evaluation of k distances
d(q, o) = 1 − Qscore(q, o), as well as the second phase of the search. When
Qscore(q, o) is evaluated, the alignment of the protein chains q and o is displayed
since the Qscore computation involves the best alignment of protein chains in 3D
Euclidean space. Asynchronous evaluation allows to provide some results quickly,
and we stop remaining evaluations when the results of the second phase are de-
livered. The results are sorted dynamically according to the distances d(q, o). If
the distance is bigger than the specified radius of the query, the ID of chain o is
hidden from the results.

10 Vladimir Mic, Tomáš Raček, Aleš Křenek and Pavel Zezula

3.3 Second Phase of the Query Execution

The second phase of the query execution is similar to the first one, but it uses
large sketches sk(o), o ∈ X. Specifically, 489 distances d(q, p) between q and
pivots p are evaluated to create a large sketch of q, and all 495,085 Hamming
distances h(sk(q), sk(o)), o ∈ X are evaluated to return the result of the second
phase. We, however, utilise also the minimum required Qscore to define the
searching radius in the Hamming space of large sketches, and we evaluate the
kNN queries with the limited searching radius in the Hamming space. We use
the probabilistic model from the article [13] that approximates the mapping of
distances t = d(q, o) to the Hamming distances b = h(sk(q), sk(o)) of sketches
created by the GHP 50 sketching technique, such that:

P
(
d(q, o) ≥ t | h(sk(q), sk(o)) = b

)
≈ π (4)

where π is the probability empirically set to 0.75 [13]. Intuitively, having the
Hamming distance of sketches, the mapping estimates the minimum probable
distance of the protein chains. Table 1 gives examples of the mapping that is
used in our web application. While the mapping of distances is used just to set
a disposable Hamming radius to search the large sketches in the second phase,
it plays a crucial role in the third phase.

3.4 Third Phase of the Query Execution

We use a high-quality pivot permutation based index called the PPP-codes [16]
and the secondary filtering by large sketches [13] in the third phase.

The PPP-codes index [15, 16] uses 4 independent Voronoi partitionings [21]
of the metric space (D, d). Each Voronoi partitioning uses 128 pivots that are
disjunctive subsets of all 512 preselected pivots. Each protein chain is indexed
using all these partitionings in the main memory. Given a query chain q, the
chains CandSet(q) that are likely to be similar to q are determined (the candidate
set) by a selective combination of individual Voronoi partitionings [16]. The
candidate set size is given as a parameter in advance.

Usage of PPP-codes clarifies the number of 512 pivots that we use. Each
Voronoi partitioning uses 512/4 = 128 pivots to approximate position of each
chain, and we need to have a few distances between 128 pivots and each protein
chain smaller than 1. We found 512 pivots as the optimum number, since 768
and 124 pivots provide practically the same results as presented with 512 pivots.

Particular position of the query chain q significantly infers the performance
of similarity indexes. A fixed candidate set size used for all query chains q ∈ D
does not take into account different density of chains o ∈ X around given q ∈ D,
and thus decreases the quality, or unnecessarily increases the number of distance
computation in case of many query chains [13]. The secondary filtering of the
CandSet(q) by sketches can effectively reduce the CandSet(q) dynamically, using
the current searching radius given either by the query assignment or by the
distance to the kth nearest neighbour, found so far.

Similarity Search for an Extreme Application: Experience & Implementation 11

We evaluate the third phase of the query execution as follows. When the
second phase of the query execution is finished, we evaluate all the remaining
distances of q to 512 pivots p, and search for the candidate set CandSet(q)
of size 5,000 (≈ 1 % of the dataset) by the PPP-codes. When a protein chain
o ∈ X is confirmed to be in the CandSet(q), we evaluate the Hamming distance
h(sk(q), sk(o)) of large sketches. This Hamming distance is used together with
the mapping illustrated by Table 1 to estimate the minimum probable distance
of protein chains. If this estimated distance is bigger than the current searching
radius, o is discarded. Otherwise, we evaluate the distance d(q, o), and we grad-
ually build the answer of the third phase. Building the answer is finished when
the whole CandSet(q), i.e. 5,000 chains, is processed.

The need to minimise the number of distance computations also clarifies the
need to limit the searching radius from the beginning, i.e., to evaluate kNN +
range queries instead of kNN queries. If a kNN query is evaluated, the secondary
filtering is not utilised until k distances are evaluated to fill the query answer.
Then the searching radius decreases gradually, usually from a high value. Im-
mediate range limitation thus enables an effective secondary filtering from the
beginning of the query execution which effectively decreases the number of dis-
tance computations. Similarly, the k value improves the effectiveness of the sec-
ondary filtering since if the query answer is full, the searching radius is given by
the distance to the kNN instead of the original query range, so the secondary
filtering power increases dynamically.

Table 1 illustrates an extreme power of the secondary filtering with the
GHP 50 sketches. The implicit searching radius in our application is 0.5, which
is a very small distance considering the distance density depicted in Fig. 3. Dis-
tance 0.5 is mapped to the Hamming distance 340, i.e., if sketches sk(q), sk(o)
of length 1024 bits differs in at least 340 bits, we skip the evaluation of distance
d(q, o). Lemma 1 and Theorem 2 in article [12] defines the mean and the vari-
ance of the Hamming distances on GHP 50 sketches: the mean is λ/2, i.e. 512,
and the variance decreases towards λ/4, i.e. 256, with the decreasing pairwise
bit correlations – and they are minimised by the GHP 50 sketching technique.
Therefore, the Hamming distance of large sketches sk(q) and sk(o) as small
as 340 is very improbable, and the secondary filtering usually discards a vast
majority of the CandSet(q) identified by the PPP-codes.

4 Experiments

Since we focus on kNN queries with limited radius 0.5, we report the number
of nearest neighbours within this radius. We use 1,000 query chains in our ex-
periments, that are selected in the same way as pivots, i.e., uniformly randomly
with respect to the protein chain size. None of the query chains is used also as
a pivot. Fig. 7 illustrates the number of nearest neighbours in the ground truth
(i.e., the precise answer) for all 218 query chains q that have less than 30 nearest
neighbours within distance 0.5. All other 782 query chains have at least 30 near-
est neighbours within the distance 0.5, and we use 30 closest of them as their

12 Vladimir Mic, Tomáš Raček, Aleš Křenek and Pavel Zezula

Fig. 7: Number of nearest neighbours within distance 0.5 to each query chain q.
218 out of 1,000 tested q do not have 30 nearest neighbours up to distance 0.5.

ground truth. The searching quality is described by the accuracy, i.e., the ratio of
nearest neighbours from the ground-truth that is found. Fig. 7 clarifies that the
similarity queries with the search radius 0.5 should provide non-empty answers
for around 98 % of query chains despite an extreme distance density illustrated
by Fig. 3. We point out that an empty answer provides useful information due
to a strong relation of the distance function to the protein chain structures, as
discussed in Sec. 2.4.

Box-plots in Fig. 8a depict the searching accuracy over particular query
chains. The first and second phases search with a median accuracy 0.467 and
0.667, respectively. Both have a huge variance – the differences between the first
and the third quartiles are 0.44 and 0.43, respectively. The third phase evaluates
700 out of 1,000 queries precisely, so it has the median accuracy 1. The average
accuracy is 0.937 due to the worst query chains – averages are depicted by the
dashed line for each box-plot in Fig. 8.

We evaluate 30NN queries with the radius 0.5 also by the existing PDBe
search engine, but we use the setting which guarantees to find all nearest neigh-
bour up to distance 0.3. This setting provides much faster search than the precise
one, and it is still of a slightly better accuracy than our inherently approximate
search with the radius 0.5 (see Fig. 8a). The speed comparisons of the search
engines with these settings are thus quite fair.

Fig. 8b relates to the third phase of the query execution which uses the
PPP-codes to select 5,000 candidate chains CandSet(q), and filters [13] them
with the large sketches. Fig. 8b illustrates that just 190 out of 5,000 candidate
chains remain per median q after this filtering. The first and third quartiles are
87 and 465, respectively, the minimum number of remained chains is 2 and the
maximum is 4,688. These numbers thus correspond to the only distance d(q, o)
evaluations conducted apart from 512 query-to-pivots distance evaluations to
return the query answers with median accuracy 1 and average accuracy 0.937.
Please see that this highest number of distance computations, 4,688, clarifies our

Similarity Search for an Extreme Application: Experience & Implementation 13

(a) Searching accuracy (b) Dist. comps.

Fig. 8: Searching accuracy and number of distance computations after the sec-
ondary filtering with large sketches in the 3rd phase

Fig. 9: Query execution times in seconds

choice of the candidate set size, i.e., 5,000 selected by the PPP-codes – we have
observed query chains that utilises the vast majority of such candidate set.

Fig. 9 depicts the searching times in seconds2. Box-plots again describe the
distribution of values over particular query chains q. The scale of the times is
multiplied by 10 for each box-plot, and there are a few outliers that do not fit the
scale and are described above each box-plot. All 3 phases provide their answers
within 5 seconds for almost 70 % of query chains (see the third box-plot), but
there is an extreme tail clearly explained by the previous analysis. 1 % of the
slowest query executions (i.e., 10 queries) requires more than 49 seconds, each.
The median searching time of all 3 phases is 2.5 s. The fourth box-plot depicts

2 No caching is used here except a re-using the distances evaluated in the previous
phases of the same query execution.

14 Vladimir Mic, Tomáš Raček, Aleš Křenek and Pavel Zezula

the searching times of the current PDBe search engine. The median is 183 s, i.e.,
73 times slower.

The suitability of our approach is confirmed by an ability of the first and
second phases to deliver results of a lower accuracy but much faster. The most
difficult query chain out of 1,000 examined is evaluated with the following accu-
racy and times:

1st phase 1st and 2nd phase All 3 phases PDBe engine
Accuracy 0.46 0.66 0.93 1
Time 4 s 13 min 1:40 hours 3:59 hours

5 Conclusions

We described our experience with the similarity search in extreme metric space
which strongly suffers from the variance of objects size and the similarity function
complexity. The times needed to evaluate the pairwise protein chain similarity
vary by 6 orders of magnitude from 1 ms to more than 43 minutes. The number
of similarity comparisons thus must be minimised. Providing users with interme-
diate query results of increasing quality effectively mitigates user inconvenience,
and we evaluate queries in 3 consecutive phases. Each phase introduces the min-
imum overhead to the following phases, and the first query results are always
delivered in a couple of seconds. Since the similarity query execution in 495,085
protein chains evaluates just hundreds of distance computations for a majority
of query chains, we achieve median searching time 2.5 s which is 73 times faster
than the result of the engine employed in the “Protein Data Bank in Europe”.
As the future work, we would like to develop a distributed search engine for
real-life usage [14, 3].

References

1. Amato, G., Savino, P.: Approximate similarity search in metric spaces using in-
verted files. In: 3rd International ICST Conference on Scalable Information Sys-
tems, INFOSCALE 2008, Vico Equense, Italy, 2008. p. 28. ICST / ACM (2008)

2. Armstrong, D.R., Berrisford, J.M., Conroy, M.J., Gutmanas, A., Anyango, S.,
Choudhary, P., Clark, A.R., Dana, J.M., Deshpande, M., Dunlop, R., Gane, P.,
Gáborová, R., Gupta, D., Haslam, P., Koča, J., Mak, L., Mir, S., Mukhopadhyay,
A., Nadzirin, N., Nair, S., Paysan-Lafosse, T., Pravda, L., Sehnal, D., Salih, O.,
Smart, O., Tolchard, J., Varadi, M., Svobodová-Vařeková, R., Zaki, H., Kleywegt,
G.J., Velankar, S.: PDBe: improved findability of macromolecular structure data
in the PDB. Nucleic Acids Research 48(D1), D335–D343 (11 2019)

3. Batko, M., Novak, D., Falchi, F., Zezula, P.: Scalability comparison of peer-to-peer
similarity search structures. Future Gener. Comput. Syst. 24(8), 834–848 (2008)

4. Berman, H.M., Westbrook, J., Feng, Z., et al.: The protein data bank. Nucleic
Acids Res. 28(1), 235–242 (2000)

5. Bernhauer, D., Skopal, T.: Analysing indexability of intrinsically high-dimensional
data using trigen. In: Similarity Search and Applications. pp. 261–269. Springer
International Publishing, Cham (2020)

Similarity Search for an Extreme Application: Experience & Implementation 15

6. Chávez, E., Figueroa, K., Navarro, G.: Effective proximity retrieval by ordering
permutations. IEEE Trans. Pattern Anal. Mach. Intell. 30(9), 1647–1658 (2008)

7. Connor, R.C.H., Dearle, A., Mic, V., Zezula, P.: On the application of convex
transforms to metric search. Pattern Recognit. Lett. 138, 563–570 (2020)

8. Deng, L., Zhong, G., Liu, C., et al.: MADOKA: an ultra-fast approach for large-
scale protein structure similarity searching. BMC Bioinformatics 20(662) (2019)

9. Kearsley, S.K.: On the orthogonal transformation used for structural comparisons.
Acta Crystallogr. A A45, 208–210 (1989)

10. Krissinel, E., Henrick, K.: Secondary-structure matching (SSM), a new tool for fast
protein structure alignment in three dimensions. Acta Crystallographica Section
D: Biological Crystallography 60(12), 2256–2268 (2004)

11. Krissinel, E.: Enhanced fold recognition using efficient short fragment clustering.
Journal of molecular biochemistry 1(2), 76 (2012)

12. Mic, V., Novak, D., Zezula, P.: Designing sketches for similarity filtering. In: 2016
IEEE 16th International Conference on Data Mining Workshops (ICDMW). pp.
655–662 (Dec 2016)

13. Mic, V., Novak, D., Zezula, P.: Binary sketches for secondary filtering. ACM Trans-
action on Information Systems 37(1), 1:1–1:28 (Dec 2018)

14. Novak, D., Batko, M., Zezula, P.: Large-scale similarity data management with
distributed metric index. Inf. Process. Manag. 48(5), 855–872 (2012)

15. Novak, D., Zezula, P.: Performance study of independent anchor spaces for simi-
larity searching. The Computer Journal 57(11), 1741 (2014)

16. Novak, D., Zezula, P.: PPP-codes for large-scale similarity searching. Trans. Large-
Scale Data- and Knowledge-Centered Systems 24, 61–87 (2016)

17. Skopal, T.: Unified framework for fast exact and approximate search in dissimilarity
spaces. ACM Trans. Database Syst. 32(4), 29 (2007)

18. Velankar, S., Best, C., Beuth, B., Boutselakis, C.H., Cobley, N., Sousa Da Silva,
A.W., Dimitropoulos, D., Golovin, A., Hirshberg, M., John, M., Krissinel, E.B.,
Newman, R., Oldfield, T., Pajon, A., Penkett, C.J., Pineda-Castillo, J., Sahni, G.,
Sen, S., Slowley, R., Suarez-Uruena, A., Swaminathan, J., van Ginkel, G., Vranken,
W.F., Henrick, K., Kleywegt, G.J.: PDBe: Protein Data Bank in Europe. Nucleic
Acids Research 38(suppl 1), D308–D317 (10 2009)

19. Winn, M.D., CC, C.C.B., Cowtan, K.D., et al.: Overview of the CCP4 suite and
current developments. Acta Crystallogr. D67, 235––242 (2011)

20. Yang, A., Honig, B.: An integrated approach to the analysis and modeling of
protein sequences and structures. i. protein structural alignment and a quantitative
measure for protein structural distance. J Mol Biol, 301, 665––678 (2000)

21. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search – The Metric
Space Approach, Advances in Database Systems, vol. 32. Springer (2006)

