
Non-Parametric Semi-Supervised Learning by
Bayesian Label Distribution Propagation

Jonatan Møller Nuutinen Gøttcke1[0000−0003−4104−0298], Arthur
Zimek1[0000−0001−7713−4208], and Ricardo
J. G. B. Campello2[0000−0003−0266−3492]

1 Institute of Mathematics and Computer Science,
University of Southern Denmark, Odense, Denmark

{goettcke,zimek}@imada.sdu.dk
2 School of Mathematical and Physical Sciences,

University of Newcastle, Callaghan, Australia
Ricardo.Campello@newcastle.edu.au

Abstract. Semi-supervised classification methods are specialized to use
a very limited amount of labelled data for training and ultimately for as-
signing labels to the vast majority of unlabelled data. Label propagation
is such a technique that assigns labels to those parts of unlabelled data
that are in some sense close to labelled examples and then uses these
predicted labels in turn to predict labels of more remote data. Here
we propose to not propagate an immediate label decision to neighbors
but to propagate the label probability distribution. This way we keep
more information and take into account the remaining uncertainty of
the classifier. We employ a Bayesian schema that is simpler and more
straightforward than existing methods. As a consequence we avoid to
propagate errors by decisions taken too early. A crisp decision can be
derived from the propagated label distributions at will. We implement
and test this strategy with a probabilistic k-nearest neighbor classifier,
proving competitive with several state-of-the-art competitors in quality
and more efficient in terms of computational resources.

Keywords: Semi-supervised classification · k-nearest neighbor classifi-
cation · transductive learning · label propagation

1 Introduction

While easily collectable unlabelled data become more abundant, and labelled
data continue to be a scarce resource, semi-supervised learning remains rele-
vant. Semi-supervised learning falls between supervised learning (learning from
labelled data) and unsupervised learning (learning from unlabelled data) [5]. It
is used for improving unsupervised learning by taking advantage of information
traditionally used in supervised learning and for improving the performance of
supervised learning methods by using unlabelled instances.

In semi-supervised classification we have to distinguish between assigning
labels to unlabelled data during training and the application of the resulting

2 Gøttcke et al.

semi-supervised classifier to new unseen data during testing, where the classifier
is built on the complete training data consisting of labelled and unlabelled in-
stances. The labelling of unlabelled training instances is known as ‘transduction’
[20,21] or as ‘label propagation’ since it is often done by propagating labels from
the labelled training instances to the unlabelled training instances. After label
propagation, all training data can be used for inducing labels of new unseen query
instances as it is conventionally done in supervised learning. This is therefore
also known as ‘induction’. Applying a learner for transduction therefore yields a
training set with then all instances labelled that could be used by any other clas-
sifier for induction, i.e., conventional classification [27]. The classification model
used for induction could therefore be different from the semi-supervised classifier
used for transduction, but it could also be the same method that is used beyond
transduction on the training data also for induction on new, unseen data. Besides
describing different phases, tasks, or scenarios in the context of semi-supervised
learning, the exact relationship between ‘transduction’, ‘induction’, and ‘semi-
supervised learning’ remains debatable [4]. In this paper we evaluate methods
in a transductive setting as it is common practice [9,25,26,23,24,12,8].

We argue that it might be important to account for uncertainties during
transduction and to keep information on uncertain decisions possibly also beyond
the transduction phase, if induction is treated separately and the classification
algorithm employed for induction can make use of uncertain label information
or label probability distributions. For a simple illustration, consider the one-
dimensional distribution of classes in one attribute (sepal length) of the well-
known Iris data, plotted in Figure 1. Some classification model might be based
on the estimated probability density distribution and decide for the maximum
likelihood class at any given point in the data space. Considering the example of
the figure, if we have a sepal length, say, between 5 and 6 cm, we can decide on
a clear decision boundary but a high probability would remain to have chosen
the wrong class. If just the resulting label is propagated and used for ensuing
decisions, these later decisions are necessarily oblivious of a possibly considerable
level of uncertainty that actually affects also these later decisions. To account
for this uncertainty, we suggest that, instead of propagating a label, the label
probability distribution should be propagated and would thus also be available
for later decisions. We could see this as an attempt to keep as much information
as possible as long as potentially useful for the classification of new instances.

This idea has been employed in some specific graph-based methods, as we
will survey below. Here we propose a more general probabilistic, non-parametric
semi-supervised classification schema and demonstrate its benefits by imple-
menting it with a probabilistic k nearest neighbor classifier that is conceptually
simpler and yet compares favorably against state-of-the-art methods for semi-
supervised classification on a large collection of datasets being considerably more
efficient.

In the remainder, we give an overview of related work on semi-supervised
classification (Section 2), introduce the general concept and a concrete imple-
mentation of our method (Section 3), study its performance on a large collection

Non-Parametric Semi-Supervised Learning 3

4 5 6 7 8 9
sepal length

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

ke
rn

el
 d

en
sit

y

C1

C2

C3

species
setosa
versicolor
virginica

Fig. 1. Some classifier’s model (estimated class-conditional probability density distri-
butions). Deciding at any point according to the maximum class (posterior) probability
and using only that label later renders further propagation or later induction oblivious
of the evidence for other classes. Example data from the Iris dataset.

of datasets and compare against several state-of-the-art methods in terms of
effectiveness and efficiency (Section 4), and conclude with a short discussion of
some properties of the compared methods (Section 5).

2 Related work

There are many variations of semi-supervised learning such as self-training [16]
and co-training [2]. Transductive learning [20] is a part of the foundation of
semi-supervised learning and relates to an approach that uses both labelled and
unlabelled data as training data, TR = L ∪ U , to predict labels for U . Some of
the most popular methods in this field have been surveyed in books broadly dis-
cussing the area [5,27]. Well known methods such as graph classification [23,12]
and support vector machines have been adapted to the transductive setting [9],
and have been used in combination with Laplacian regularization as for Gaus-
sian Field Harmonic Function (GFHF) [25,26]. In the following we discuss some
methods that are more closely related to our approach.

The basic idea of GFHF [25,26] is to model a transition probability in the
graph representing the dataset, typically using the RBF kernel. All nodes are as-
sociated with a class label distribution which is updated following the transition
probabilities until convergence. GFHF also was seminal for Laplacian support
vector machines and Laplacian regularized least squares [1]. GFHF propagates
the transition probabilities estimated by the RBF kernel on the complete graph.
In each iteration the propagation of transition probabilities is normalized to
maintain a probability interpretation, and the method iterates until convergence.

Learning with Local and Global Consistency (LGC) [23] is inspired by GFHF
and mainly differs in the propagation process, including a parameter α that

4 Gøttcke et al.

determines how the information from the previous and the current iteration
are weighted. LGC also uses the RBF kernel to generate a weight matrix for
the complete graph and normalizes the weights to maintain label probability
distributions for propagation in each iteration.

Szummer and Jaakola [18] proposed one of the first semi-supervised classifi-
cation algorithms, using Markov random walks from a number of random points
in the dataset, and the RBF kernel (similarly as Zhu et al. [26]) for determining
the edge weights to estimate the class conditional probability. They use kNNs for
finding the local manifold structure. Substantial differences between the method
presented in this paper and Szummer and Jaakola’s is the choice of the kernel
used to define the label distributions, their use of a symmetrized kNN graph,
and their probability estimation procedure. Furthermore their method requires
several additional parameters such as the time parameter t for the number of
steps in the Markov process to govern smoothness and the σ parameter of the
RBF kernel for edge weights, and the number of random starting points.

Liu and Chang [12] introduced the RMGT algorithm, a graph based al-
gorithm that utilizes the combinatorial Laplacian matrix to describe the local
manifold structure. They introduce a new underlying graph topology referred to
as the symmetry favored kNN graph, which adds weights to bidirectional edges
in the directed kNN graph. De Sousa and Batista [17] extended this algorithm
further (RMGTHOR) by modifying the regularization framework to use a nor-
malized Laplacian, or a Laplacian with a degree higher than 1, instead of the
combinatorial Laplacian used in the earlier methods.

3 Label Probability Distribution Propagation

3.1 Motivation

In semi-supervised classification, a core assumption is that the labelled subset L
of the training set is much smaller both in relative and absolute terms than the
unlabelled subset U , i.e., |L| � |U |. Therefore a learner should be extra careful
when propagating labels because of the high probability of propagating errors
when decisions are based on insufficient information. With further propagation
of potentially erroneous labels such errors can spread and have a severe impact
on the quality of the transduction.

This is the core motivation for our proposal to not propagate class labels but
instead to propagate the distribution of class labels (or class label probabilities)
from instances in L to instances in U . Such class probabilities can be determined
in principle using any probabilistic classifier.

3.2 General Schema

In Figure 1 we see three probability density functions for the three classes over
the sepal length attribute in the Iris dataset. We propose to propagate label prob-
ability distributions to unlabelled instances in a semi-supervised manner using

Non-Parametric Semi-Supervised Learning 5

the (estimated) probability density for each class starting from a straightforward
Bayesian schema:

With the prior class probability Pr(c) for each class c ∈ C and Bayes theorem,
the probability for instance x to belong to a class c can be estimated by:

Pr(c|x) ∝ f̂(x|c) Pr(c)∑
ci∈C f̂(x|ci) Pr(ci)

(1)

where f̂ is some estimate of the probability density (which could be a direct
probability estimate, if some classifier delivers that).

Such estimated label probability distributions are assigned to all instances
x ∈ U , such that the label yi of instance xi is in fact a label distribution:

yi = (Pr(c1|xi),Pr(c2|xi), · · · ,Pr(cn|xi))> (2)

Consider an unlabelled instance x in Figure 1. The probability density for
each class is given by c1, c2, and c3, and the probability for belonging to each class
can then be calculated by Eq. (1). The standard maximum likelihood prediction
would predict class c3 and immediately lose the information that the other two
classes, albeit less likely, still carry a non-negligible probability that could be
helpful to decide close cases downstream, when using x transductively (or even
for induction later on). This is because, after the assignment of a label probability
distribution to instance x, x is moved from the set of unlabelled data U to the
set of labelled data L and is used for the transductive labelling process that
continues until U = ∅ and all training instances are labelled.

3.3 kNN-Label Distribution

To test this concept in semi-supervised classification we employ a probabilistic
kNN classifier to estimate label probability distributions in a non-parametric way
and describe an algorithm to propagate label probability density distributions
using kNN, resulting in an algorithm kNN Label Distribution Propagation (kNN-
LDP). Propagating label probability distributions allows data instances to have
a soft labelling and the transduction to account for this label distribution when
calculating the label probability distributions of unlabelled neighbors.

While we keep all information of the label probability distributions as long as
possible, we can at any point derive a crisp labelling of a query object if needed,
taking the maximum of the assigned class probabilities. Also note that, although
we focus on the transduction here, we could also apply the same algorithm for
induction beyond the training data to predict the class (or the label probability
distribution) for any unseen query object.

In the supervised scenario of using the kNN classifier, the label probability
distribution for some instance x is given by the class-conditional density esti-
mates based on the k nearest neighbors of x taken over the labeled training data
L [7,22]:

f̂(x|cj) =
|{x` ∈ kNN(x) ∩ cj}|

|{x` ∈ L ∩ cj}| ·VolkNN(x)
(3)

6 Gøttcke et al.

(a) An unlabelled instance in the train-
ing set receives a label distribution
from labelled neighbors (note that we
have a tie in the neighborhood and
therefore effectively use k + 1 neigh-
bors).

(b) An unlabelled instance in the train-
ing set receives the label distributions
from neighbors, including examples la-
beled by label distribution propagation
(no tie here).

Fig. 2. kNN label distribution propagation, using k = 3, without and with partially
labelled examples.

where | · | denotes the cardinality of a set and VolkNN(x) denotes the volume
needed to cover k nearest neighbors of x, centered at x. The shape of this volume
will depend on the employed distance function. Note, however, that the volume
cancels nicely out when putting this into Eq. (1).

In the semi-supervised scenario tackled here, an instance among the nearest
neighbors might not have a crisp label but a label probability distribution itself,
or no label for instances ∈ U . For getting a well-defined probability distribution
we can treat the “unknown” case as a special class. Accounting for partial labels
in Eq. 3 thus yields

f̂(x|cj) =

∑
x`∈kNN(x) Pr(cj |x`)∑

x`∈L Pr(cj |x`) ·VolkNN(x)
(4)

Using this in Eq. (1), the probability for each class c in the label distribution,
depending on the label probability distributions of the k nearest neighbors, is
therefore given by

Pr(c|x) =

∑
x`∈kNN(x) Pr(c|x`)
| kNN(x)|

(5)

We illustrate the method in Figure 2. The example x1 ∈ U receives label
information from its k nearest neighbors. One of the nearest neighbors, x2 ∈ U ,
is unlabelled. As a result, x1 would now carry partial label information which
we can interpret as a label probability distribution (Figure 2(a)). Next, example
x2 is processed and receives label information from its neighbors, including x1,

Non-Parametric Semi-Supervised Learning 7

thus not just counting labels of classes but considering the label probability
distribution over the k nearest neighbors (Figure 2(b)).

3.4 Abstention in Case of Insufficient Information

We have to account for a potential complication in this process of assigning
label probability distributions. There might be insufficient information to assign
some label probability distribution to some given unlabelled instance. This is
a complication that is not unlikely in the semi-supervised scenario, where we
assume much less labeled than unlabeled training data.

If we encounter such an instance that cannot get assigned any class proba-
bilities, we assign a special label signaling the fact that the label distribution is
unknown, thus employing the concept of abstaining classifiers [15], although we
do not propose here to optimize the classifier w.r.t. abstention.

3.5 Propagation Algorithm

To use as much information as possible for the label assignment in just two passes
over the data we start with the instances where most information is available,
that is where the sum of the class probabilities over the neighbors (except for the
class “unknown”) is maximal, and continue to process instances with decreasing
order w.r.t. this available information (which might change over time). This
requires checking all neighborhoods in advance. For the sake of efficiency, the
forward and reverse k nearest neighbors should be indexed in this first pass.

The information that can be used for label distribution assignments can be
captured in weights:

w(x) =
∑

c∈C\{“unknown”}

Pr(c|x) (6)

These weights w are used to keep the instances sorted in decreasing order w.r.t.
the available information in some priority queue. This way, as much information
as possible is used in one sweep over the data, updating the label probability dis-
tributions and the weights of the reverse k nearest neighbors (RkNN) of updated
instances (i.e., those that are affected by an update of the current instance). This
might make instances climb up in the priority queue if their weight changed be-
cause their neighbors got label distribution information assigned. In the example
of Figure 2, this would be the case for x2 ∈ RkNN(x1): after having assigned
a label probability distribution to x1, w(x2) will increase. Then we can assign
an estimate of the label distribution for each instance, as defined in Eqs. (2)
and (5). Note that the definitions of probability distributions include the class
“unknown”, such that probabilities sum up to one. A sketch of the procedure is
provided in Algorithm 1.

3.6 Advantages and Disadvantages of kNN-LDP

The label distribution propagation algorithm proposed here also has an underly-
ing graph interpretation when implemented with a k nearest neighbor classifier.

8 Gøttcke et al.

Algorithm 1 kNN-LDP

1: for all x ∈ U do
2: index forward and reverse k nearest neighbors (kNN,RkNN)
3: x.w ←

∑
c∈C\{unknown} Pr(c|x) {Eq. (6)}

4: end for
5: PQU ← priority-queue(U) {decreasing order w.r.t. x.w}
6: while PQU .size > 0 do
7: x← PQU .getMax()
8: if x.w > 0 then
9: x.y ← (Pr(c|x))c∈C {Eqs. (2) and (5)}

10: for all p ∈ RkNN(x) do
11: p.w ←

∑
c∈C\{unknown} Pr(c|p) {Eq. (6)}

12: PQU .update(p)
13: end for
14: L← L ∪ {x}
15: else
16: x.y ← unknown
17: for all p ∈ PQU do
18: p.y ← unknown
19: L← L ∪ {p}
20: end for
21: PQU ← ∅
22: end if
23: end while

It has some advantages over other graph-based methods. The asymptotic run-
time of the kNN-based label distribution propagation algorithm is identical to
that of finding the kNN, i.e., the operation of identifying the nearest neighbors
is the computational bottleneck as in many applications and could naturally
benefit from employing efficient neighborhood search methods [11,10]. Yet, due
to the heuristic order of processing instances, our method, as opposed to many
competitors, does not require any iterations.

The runtime for graph-based algorithms depends on the topology of the graph
but is typically higher than the runtime of kNN-LDP which only makes neigh-
borhood queries for the unlabelled data. A mutual-kNN graph requires the com-
putation of the nearest neighbors of all labelled and unlabelled instances which
takes O(n2) for a dataset of size n. If Ozaki’s graph connection method [13] is
used, computing the complete similarity graph takes O(n2), which cannot be
improved. Finding the minimum spanning tree (or rather maximum spanning
tree, as it is based on similarities, not distances) takes O((V +E) log V), where
V is the number of vertices, and E is the number of edges in the graph. For the

complete graph this takes n+ n(n−1)
2 log n(n−1)

2 using Prim’s algorithm.

Although the kNN Label Distribution Propagation is different from the most
common graph-based algorithms it also comes with some of the same disadvan-
tages. When constructing an adjacency matrix in nearest-neighbor graph-based
semi-supervised learning algorithms, the number of components plays an essen-

Non-Parametric Semi-Supervised Learning 9

Table 1. Competitors and their implementations

Method Impl. Name Impl. Source

GFHF [26] Label Propagation }
Scikit-Learn [14]

LGC [23] Label Spreading
LapRLS [1] LapRls } https://github.

com/HugoooPerrin/
semi-supervised-learningLapSVM [1] LapSvm

RMGT [12] RMGT }
de Sousa & Batista [17]

RMGTHOR [17] RMGTHOR
This paper kNN LDP https://github.com/Goettcke/kNN_LDP

tial role in the success of the label propagation. A similar problem is present
in kNN-LDP, if an unlabelled instance cannot be reached by the propagation
through neighborhoods, i.e., if an unlabelled instance resides in a graph com-
ponent without any labelled instances. This problem tends to occur more with
a smaller ratio of L

U and a smaller value of k, and tends to affect the label
propagation late in the process.

There are different strategies to tackle this problem. One could be to increase
k until at least one neighbor carries label information. However, sparse graphs
are observed empirically to perform better than dense or complete graphs [28],
as they have a higher sensitivity to detecting the local manifold which the data
points lie on. Another solution, as seen in related work, is to assign the majority
class if no other information is available.

The solution we have chosen for kNN-LDP is to make the classifier abstaining
from making a decision where it does not have the information and giving it the
class label “unknown”. It should be noted that this is a clear disadvantage in
the comparison, as such a label will always count as an error. We will see in the
evaluation that trading these errors in the evaluation metric for not propagating
potential errors to further decisions seems to pay off.

4 Experimental Evaluation

4.1 Competitors

As competitors we selected the more closely related methods GFHF [26], LGC
[23], RMGT [12], and the more recent RMGTHOR [17] method. The Lapla-
cian regression method, Laplacian Regularized Least Squares (LapRLS) and
Laplacian Support Vector Machines (LapSVM) [1] were also evaluated. We used
publicly available implementations, an overview is provided in Table 1.

4.2 Parameters

In the experiments all distances are Euclidean. LapSVM and LapRLS were tested
in two settings, using the Linear kernel and the RBF kernel. GFHF and LGC
use the RBF kernel. For LGC we used α = 0.2 as it is the default value in the

https://github.com/HugoooPerrin/semi-supervised-learning
https://github.com/HugoooPerrin/semi-supervised-learning
https://github.com/HugoooPerrin/semi-supervised-learning
https://github.com/Goettcke/kNN_LDP

10 Gøttcke et al.

Table 2. Datasets used for comparative evaluation.

dataset classes attributes instances dataset classes attributes instances

australian 2 14 690 page-blocks 5 10 5472
banana 2 2 5300 phoneme 2 5 5404
breast 2 30 569 segment 7 19 2310
bupa 2 6 345 spambase 2 57 4597
cleveland 5 13 297 spectfheart 2 44 267
contraceptive 3 9 1473 tae 3 5 151
dermatology 6 34 358 vowel 11 13 990
glass 6 9 214 wine 3 13 178
hayes roth 3 4 160 wine-red 6 11 1599
heart 2 13 270 wine-white 7 11 4898
iris 3 4 150 wisconsin 2 9 683
led7digit 10 7 500 COIL 2 50 1500
mammo. mass 2 5 830 digit-1 2 50 1500
monk-2 2 6 432 G-241C 2 50 1500
movement libras 15 90 360 G-241N 2 50 1500
new thyroid 3 5 215 USPS 2 50 1500

Scikit-Learn implementation. RMGT uses combinatorial Laplacian regulariza-
tion. RMGTHOR uses the normalized Laplacian. Both methods use local linear
embedding for building the weight matrices. RMGTHOR uses a Laplacian degree
of 1. For all algorithms based on k nearest neighbors we invariably set k = 10,
following findings that some small value is typically a good choice for the local
density estimation and for determining the local manifold [28].

For the methods taking an RBF kernel, σM ∈ {0.1, 0.5, 1} was tested. For the
parameters γL and γM for LapSVM and LapRLS a grid search was performed
for all combinations of the values γL ∈ {0.1, 0.5, 1} and γM ∈ {0.1, 0.5, 1}, that
is using the same range as the original publication [1]. The grid search tries all
combinations of the parameters in the parameter sets, and for each dataset the
best result achieved is extracted and used for comparison.

Parameter optimization is necessary for these methods to avoid poor per-
formance. It should be noted, though, that selecting the best results for these
methods gives them an advantage in the comparison.

4.3 Datasets

We have evaluated our method and state-of-the-art competitors on the 5 datasets
commonly used in semi-supervised classification benchmarks [3] as well as on 27
datasets used by Triguero et al. [19]. The datasets have been selected such that
all algorithms compared to in this study could be applied without adjustments.
An overview on the datasets is provided in Table 2.

Non-Parametric Semi-Supervised Learning 11

2 3 4 5 6 7

CD

kNN LDP
RMGT

RMGTHOR
LapRLS Lin

LGC
GFHF
LapSVM Lin
LapRLS RBF
LapSVM RBF

(a) 5% labelled and 95% unlabelled data

2 3 4 5 6 7

CD

RMGT
kNN LDP

RMGTHOR
LapRLS Lin

LGC
LapSVM Lin
GFHF
LapSVM RBF
LapRLS RBF

(b) 10% labelled and 90 % unlabelled data

2 3 4 5 6 7

CD

RMGT
RMGTHOR

kNN LDP
LapRLS Lin

LGC
GFHF
LapSVM Lin
LapRLS RBF
LapSVM RBF

(c) 20% labelled and 80% unlabelled data

Fig. 3. Critical difference plots showing the relation between the tested algorithms
transductive performance on different proportions of available label information.

4.4 Evaluation Setup

Each dataset has been split into labelled training data and unlabelled train-
ing data, in three different split proportions (labelled, unlabelled): [0.05, 0.95],
[0.1, 0.9], and [0.2, 0.8]. In each setting, we average the test results over 64 ran-
dom samples. We measure accuracy on crisp decisions derived from the label
probability distributions post hoc in case of kNN-LDP, and the built-in predict
functions for other methods. We count as error when kNN-LDP is abstaining
from classifying an instance.

4.5 Results

For assessing the performance of the different methods, we show “critical dif-
ference plots” following the methodology described by Demšar [6] for assessing

12 Gøttcke et al.

20000 40000 60000 80000 100000
dataset size

100

101

102

103

104

ru
nt

im
e

(s
ec

on
ds

) GFHF
LapRLS
LapSVM
LGC
RMGT
RMGTHOR
kNN-LDP

Fig. 4. Runtime in seconds scaling with dataset size.

the statistical significance in the ranking of the compared methods in terms of
accuracy in Figure 3. These plots visualize the mean rank over all datasets and
the critical difference given the number of datasets and algorithms used in the
statistic. If the mean rank for a method is connected to the mean rank of another
method by a horizontal bar, the two methods are within the critical difference
and their performance is not significantly different.

kNN-LDP often achieves the highest accuracy score and is significantly better
than several competitors, and not different from the other methods with statis-
tical significance. The advantage of kNN-LDP tends to be more prominent with
a smaller proportion of label information. It performs best for the smallest frac-
tion of labelled data, which is the most important scenario for semi-supervised
learning. In all scenarios, kNN-LDP forms a top group together with RMGT and
RMGTHOR where the differences are not statistically significant. We will see
next, however, that kNN-LDP is much more efficient than all the other meth-
ods, in particular kNN-LDP beats RMGT and RMGTHOR by a large margin
in terms of scalability.

4.6 Scalability

For testing the scalability of the algorithms we generated 2-dimensional datasets
with two-class problems using the Scikit-Learn make classification function, in-
creasing the dataset size. The classification problems all have uniform class dis-
tributions, and the algorithms were given 10% labelled training data. The test
hardware used consists of an AMD EPYC 7501 32-Core Processor, and 256GB
available memory. All algorithms were run with default parameters in these tests.
We depict the results of the scalability experiment in Figure 4.

The rapid increase in runtime for LapRLS, LapSVM, RMGT, and RMGTHOR
and their also rapidly increasing demands on system memory prevented tests
on larger dataset sizes. However, the disadvantage of these methods in terms of
runtime and scalability behavior is already quite clear at this point (note the log-
arithmic scale of the runtime axis). GFHF and LGC remain more competitive to
our method, although they are considerably slower. Given the logarithmic scale,
the scalability performance of kNN-LDP is clearly superior even if we would dis-

Non-Parametric Semi-Supervised Learning 13

regard its advantage in absolute runtime accounting for possible implementation
advantages [11].

5 Conclusion

We studied an elegant non-parametric method with a clear interpretation in
terms of density estimation and Bayesian reasoning here that performs as good
as or better than state-of-the-art methods on a large collection of datasets even
though it was put on a disadvantage compared to other methods in two aspects:

First, it is a fundamental requirement in graph-based algorithms that each
instance (i.e., a vertex in some kNN graph) must belong to a component in
which at least one other vertex is labelled. While other methods use undirected,
symmetrized, or even complete graphs to adhere to this assumption, in the case
of kNN-LDP the assumption is more likely to be violated because the kNN graph
is inherently directed. As a consequence each unlabelled vertex should not only
be in a component with at least one other labelled vertex but also be directly
connected to it. While other methods use various heuristics to solve cases where
this assumption is violated and can be sometimes correct with that, we simply
abstain from a decision which as such will always count as an error. However, this
abstention fits and contributes to the fundamental motivation and strategy of our
method: to avoid the propagation of errors, which will be of utmost importance
in the induction on test or new data.

Second, we performed grid search optimization of several parameters for the
competing Laplacian methods and the methods using an RBF kernel. Without
such parameter tuning, these methods would not be able to achieve reasonable
performance. No such parameter optimization was done for the k-value used
in the kNN-LDP method, and the other methods using nearest neighbor infor-
mation, where some small value is typically a good choice for the local density
estimation and for determining the local manifold [28].

In terms of efficiency and scalability, our method is clearly outperforming the
competitors.

References

1. Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: A geometric frame-
work for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 7,
2399–2434 (2006)

2. Blum, A., Mitchell, T.M.: Combining labeled and unlabeled data with co-training.
In: COLT. pp. 92–100 (1998)

3. Chapelle, O., Schölkopf, B., Zien, A.: Analysis of benchmarks. In: Semi-Supervised
Learning [5], pp. 376–393

4. Chapelle, O., Schölkopf, B., Zien, A.: A discussion of semi-supervised learning and
transduction. In: Semi-Supervised Learning [5], pp. 473–478

5. Chapelle, O., Schölkopf, B., Zien, A. (eds.): Semi-Supervised Learning. The MIT
Press (2006)

14 Gøttcke et al.

6. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. Journal
of Machine Learning Research 7, 1–30 (2006)

7. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern classification. Wiley, 2nd edn. (2001)
8. Gertrudes, J.C., Zimek, A., Sander, J., Campello, R.J.G.B.: A unified view of

density-based methods for semi-supervised clustering and classification. Data Min.
Knowl. Discov. 33(6), 1894–1952 (2019)

9. Joachims, T.: Transductive inference for text classification using support vector
machines. In: ICML. pp. 200–209 (1999)

10. Kirner, E., Schubert, E., Zimek, A.: Good and bad neighborhood approximations
for outlier detection ensembles. In: SISAP. pp. 173–187 (2017)

11. Kriegel, H., Schubert, E., Zimek, A.: The (black) art of runtime evaluation: Are
we comparing algorithms or implementations? Knowl. Inf. Syst. 52(2), 341–378
(2017). https://doi.org/10.1007/s10115-016-1004-2

12. Liu, W., Chang, S.: Robust multi-class transductive learning with graphs. In:
CVPR. pp. 381–388 (2009)

13. Ozaki, K., Shimbo, M., Komachi, M., Matsumoto, Y.: Using the mutual k-nearest
neighbor graphs for semi-supervised classification on natural language data. In:
CoNLL. pp. 154–162. ACL (2011)

14. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

15. Pietraszek, T.: On the use of ROC analysis for the optimization of abstaining
classifiers. Mach. Learn. 68(2), 137–169 (2007)

16. Scudder III, H.J.: Probability of error of some adaptive pattern-recognition ma-
chines. IEEE Trans. Information Theory 11(3), 363–371 (1965)

17. de Sousa, A.R., Batista, G.E.A.P.A.: Robust multi-class graph transduction with
higher order regularization. In: IJCNN. pp. 1–8 (2015)

18. Szummer, M., Jaakkola, T.S.: Partially labeled classification with markov random
walks. In: NIPS. pp. 945–952 (2001)

19. Triguero, I., Sáez, J.A., Luengo, J., Garćıa, S., Herrera, F.: On the characterization
of noise filters for self-training semi-supervised in nearest neighbor classification.
Neurocomputing 132, 30–41 (2014)

20. Vapnik, V.: Statistical learning theory. Wiley (1998)
21. Vapnik, V.: Transductive inference and semi-supervised learning. In: Chapelle et al.

[5], pp. 452–472
22. Zaki, M.J., Meira, Jr., W.: Data Mining and Analysis: Fundamental Concepts and

Algorithms. Cambridge University Press (2014)
23. Zhou, D., Bousquet, O., Lal, T.N., Weston, J., Schölkopf, B.: Learning with local

and global consistency. In: NIPS. pp. 321–328 (2003)
24. Zhou, D., Schölkopf, B.: Discrete regularization. In: Chapelle et al. [5], pp. 236–249
25. Zhu, X., Ghahramani, Z.: Learning from labeled and unlabeled data with la-

bel propagation. Tech. Rep. CMU-CALD-02-107, School of Computer Science,
Carnegie Mellon University (2002)

26. Zhu, X., Ghahramani, Z., Lafferty, J.D.: Semi-supervised learning using Gaussian
fields and harmonic functions. In: ICML. pp. 912–919 (2003)

27. Zhu, X., Goldberg, A.B.: Introduction to Semi-Supervised Learning. Morgan &
Claypool Publishers (2009)

28. Zhu, X.J.: Semi-supervised learning literature survey. Tech. rep., University of
Wisconsin-Madison Department of Computer Sciences (2005)

https://doi.org/10.1007/s10115-016-1004-2

	Non-Parametric Semi-Supervised Learning by Bayesian Label Distribution Propagation

