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Abstract. Similarity queries play the crucial role in content-based re-
trieval. The similarity function itself is regarded as the function of rele-
vance between a query object and objects from database; the most similar
objects are understood as the most relevant. However, such an automatic
adoption of similarity as relevance leads to limited applicability of simi-
larity search in domains like entity discovery, where relevant objects are
not supposed to be similar in the traditional meaning. In this paper, we
propose the meta-model of data-transitive similarity operating on top of
a particular similarity model and a database. This meta-model enables
to treat directly non-similar objects x,y as similar if there exists a chain
of objects x,i1,...,in,y having the neighboring members similar enough.
Hence, this approach places the similarity in the role of relevance, where
objects do not need to be directly similar but still remain relevant to each
other (transitively similar). The data-transitive similarity concept allows
to use standard similarity-search methods (queries, joins, rankings, an-
alytics) in more complex tasks, like the entity discovery, where relevant
results are often complementary or orthogonal to the query, rather than
directly similar. Moreover, we show the data-transitive similarity is in-
herently self-explainable and non-metric. We discuss the approach in the
domain of open dataset discovery.

1 Introduction

When searching data, we can choose from a multitude of available models and
paradigms. Some models assume exact data structure and semantics, such as the
relational database model (and SQL) or graph database model (RDF+SPARQL,
XML+XQuery). In such models, the relevance of a data entity to a particular
query is binary (relevant/not relevant); specified by a binary predicate. The
precision and recall in retrieval of structured data is always 100% as there is
no uncertainty expected. Also, structured query languages offer high expressive
power that allows the user to specify the relevance of data in many ways.
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On the other side of the data universe, when searching in unstructured or
loosely structured data (like multimedia, text, time series), we do not have
enough a-priori information on how to model the data features for exact search.
In such situation the similarity search models could be used, representing a
universal way of content-based retrieval in unstructured data. Instead of formu-
lating a structured query aiming at binary relevance, in similarity search we use
a ranking of the database objects determined by their similarity score to a query
example (the query-by-example paradigm). Hence, the relevance is relaxed from
binary to multiple-value. When compared to retrieval of structured data, the
similarity search is more like an "emergency solution" for unstructured data.
The expressive power of similarity queries is limited to a ranking induced by
numeric aggregation of differences between the query example and the database
objects; keeping it a black-box search for the user. The low expressive power of
the query-by-example paradigm leads to a paradox – we search for what we al-
ready have. Specifically, we query for as good results as possible, having the best
result already at hand – the query example. Of course, in practical applications
the query-by-example paradigm makes sense, because the query example itself
does not contain the whole information we search for. For instance, searching by
the photo of Eiffel tower we not only get another Eiffel tower image, but also
some context (the Wikipedia web page the result image was embedded in). Nev-
ertheless, the context (external information attached to data) does not remove
the essence of the paradox – based purely on the similarity of results, the query
example itself is always the best result1.

Historically, the low expressive power of similarity search has been accepted
in the major application area – the multimedia retrieval. Here the semantics
to be captured in multimedia objects (the descriptors) is rather vague, general
and bound to human common knowledge. The similarity search is thus a perfect
method for multimedia retrieval as the similarity concept itself is vague and gen-
eral (and so is the human cognition – the inspiration for similarity search). When
combined with descriptor models employing high-level "canonized" semantics,
such as the bag of words using the vocabulary of deep features [11], then even
the cosine similarity can perform well. Unfortunately, the domain experts are
not always so lucky to work with nicely shaped semantic descriptors, while then
the low expressive power of similarity search is fully revealed. A solution to this
could be a proposal of similarity-aware relevance of data objects to an example
object (query) that enables much more complex aggregation than just evaluat-
ing the direct similarity (the "exampleness" of the results). If we find a way of
how to extend the concept of similarity into a relevance, we would be able to
use the existing similarity search methods in more expressive retrieval scenarios.
For example, consider a fashion e-shop where a user searches for a product by
an example image, e.g., shoes. The result could not only consist of similar shoes,
but it could also return related accessories (handbag, belt) sharing some design
features with the shoes [14].

1 Let’s omit another problem; where to acquire such a "holy grail" example in real-
world problems.
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In the following, we continue the discussion in the specific domain of open
datasets discovery. Unlike in multimedia retrieval, where direct audiovisual sim-
ilarity to a query usually leads to good results, in open datasets with sparse
descriptors we often do not find anything directly (non-trivially) similar. Here
the similarity extended towards more general relevance could improve the re-
trieval effectiveness in a fundamental way.

1.1 Discovery of Open Datasets by Similarity

The similarity search models can utilize not only content features but also meta-
data (if available). The focus on metadata can be efficient and effective in do-
mains where the content of the objects is too heterogeneous so that it is hard to
extract features for measuring similarity (or relevance). On the other hand, such
objects could be catalogued by a community to enable search of the objects by
metadata.

This is the case of the domain of open datasets search and discovery [12].
There are various datasets published on the internet which are catalogued in open
data catalogs [18]. They are extremely heterogeneous in structure and semantics
so that modeling them by content is nearly impossible (consider tables and
spreadsheets without schema, full-text reports, database dumps, geographical
and map data, logs, etc.). Open data catalogs provide descriptive metadata about
the datasets in a single place where potential consumers can search for datasets.
However, the problem of metadata is that they are often sparse and poor. In the
open data domain, dataset publishers usually limit their descriptive metadata
to briefly describe the core semantics of their datasets (by title, keywords, text
description). No broader context of a dataset including some description of its
relationships to other datasets is specified in the metadata. Using such sparse
metadata for similarity retrieval is therefore limited. We confirmed this in our
previous work [26] where we showed that various similarity methods do not
perform very well when applied to the descriptive metadata of open datasets.

In our experiments, we noticed situations where two datasets are relevant to
each other but none of the similarity models is able to identify this relevance.
Let us demonstrate this on a concrete example of open data published by public
authorities in Czechia. The datasets are catalogued in the National Open Data
Catalog (NODC)2. There are two datasets entitled IDOL Integrated Transport
System Tariff Zones and Traffic intensity on sections of motorways. The sim-
ilarity of both datasets based on their metadata descriptions is low according
to various similarity models presented in [26]. However, when we reviewed the
datasets manually we found out that they are very relevant to each other. The
first one is related to public transport. The second one is related to transport on
motorways. So when users find one of the datasets, they would like to get also
the other dataset as well. What makes them relevant to each other is the back-
ground semantics which is not directly expressed in the descriptive metadata.
Since it is not expressed in the metadata, no similarity model can work with
2 https://data.gov.cz/english/

https://data.gov.cz/english/
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this. However, there is a third dataset in NODC titled BKOM transport year-
book. The similarity models identify its similarity with the original two datasets
on the base of available metadata. So using the third dataset we could say that
the two original datasets are relevant to each other because they are both similar
to the third one. In other words, they are transitively similar when using other
datasets as a context. What is also interesting in the example is that metadata
about the third dataset express explicitly the concept of transport. So, the third
dataset is not just an intermediary dataset between the two. It explains why they
are relevant, contributing thus to the discussion on explainability of similarity
search.

2 Related Work

Before presenting the meta-model of data-transitive similarity, we discuss several
related points.

2.1 Similarity Modeling

The research in the similarity search area had intensified some three decades
ago by setting the metric space model as the golden standard [25]. The met-
ric distances in place of (dis)similarity functions were introduced purely for
database indexing reasons (i.e., for fast search). Though a good trade-off for
many problems, the metric space model remains quite restrictive for modeling
similarity. The restrictions are even more strict in follow-up models aiming at
improving search efficiency, such as the ptolemaic [15] or supermetric [9] mod-
els. As mentioned in the previous section, this might not be a problem in case
the descriptors are canonized and semantic (such as histograms referring to a
vocabulary of deep features). However, for the lower-semantic cases there were
alternative approaches to indexing similarity proposed in the past 15 years, rang-
ing from dynamic combinations of multiple metrics [5] for multi-modal retrieval
to completely unrestricted, non-metric approaches [23]. The rationale for their
introduction was to increase the expressive power of similarity search (and ef-
fectiveness) and still provide an acceptable retrieval efficiency.

2.2 Retrieval Mechanisms

No matter if we choose metric or non-metric similarity, the expressive power of
retrieval is also affected by the retrieval mechanism used. The query-by-example
paradigm constitutes the basic functionality of similarity search in form of kNN
or range queries. The similarity joins enable the use of similarity within the
database JOIN operators [22]. The similarity queries could be also used with
additional post-processing techniques for multi-modal retrieval and analytics,
such as the late fusion [21] and content-based recommender systems [1]. Last but
not least, there appear proposals and frameworks helping with the integration
of similarity search constructs into query languages, such as SimilarQL [24],
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or MSQL [19]. The ultimate goal is to establish higher-level declarative query
models for similarity search [3].

2.3 Dataset Discovery

Finding related datasets, also known as dataset discovery, is one of the important
tasks in data integration [20]. Large companies such as Google have developed
their own dataset search techniques and solutions [4]. New solutions for dataset
search in specific domains started to appear recently. For example, Datamed [8]
is an open source discovery index for finding biomedical datasets. The existing
works emphasize the role of quality metadata for dataset findability while [6]
points out that available metadata does not always describe what is actually in
a dataset and whether a described dataset fits for a given task. Other studies
[12,13,16] confirm that dataset discovery is highly contextual depending on the
current user’s task. The studies show that this contextual dependency must be
reflected by the dataset search engines. This makes the task of dataset discov-
ery harder as it may not be sufficient to search for datasets only by classical
keyword-based search. More sophisticated approaches being able to search for
similar or related datasets could be helpful in these scenarios. As shown by [6,20]
many existing dataset discovery solutions are based on simple keyword search.
Discovery of datasets by similarity is discussed in the recent survey [6]. Several
papers propose dataset retrieval techniques based on metadata similarity. In [2]
a method is described which enables to measure similarity between datasets on
the base of papers citing the datasets and a citation network between datasets.
In [10] four different metadata-based models are evaluated for searching spatially
related datasets, i.e., datasets which are related because of the same or similar
spatial area covered. To the best of our knowledge, none of the approaches does
apply the following technique of data-transitive similarity in dataset discovery.

3 Data-Transitive Similarity

In this section, we introduce the meta-model of data-transitive similarity. The
original inspiration was the omnipresent database operation JOIN, used in many
data management use cases for interconnecting relevant pieces of information.
In relational databases the join operations allow to connect data records by
means of shared attribute(s). In an extensive interpretation, the mechanism in
database joins has roots in an identification of relevant entities by partial matches
(equality predicate) or by partial similarity (inequality predicate). Analogously,
by introducing data-transitive similarity we aim at consecutively joining similar
objects and evaluating the overall relevance as an aggregation over the partial
similarity scores.

The basic assumption of data-transitive similarity is thus a chain of objects
from the database that are similar to each other, but the beginning and end
of the chain could be quite dissimilar (yet relevant). Remember the well-known
example with the human and the horse, illustrating the violation of the triangle
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inequality [23]. These two creatures tend to be quite dissimilar, yet they can be
relevant (transitively similar). The relevance here can be ensured by a connecting
object in the middle of the chain – a horseman, or more poetically a centaur,
creature that is half man and half horse. The data-transitive similarity itself,
however, can be more complex; the connecting agent may not be a single object,
but a whole chain of objects. This chain also serves as an explanation of why
the two objects are relevant and in what context (addressing the explainability
issue).

The connection itself can be formalized as an aggregation of several consec-
utive ground distances. The Equation 1 defines general form of data-transitive
distance function d̂, where D is a set of objects (the database in practical ap-
plications), d is a ground distance (the direct similarity), n is the length of
the chain. Operator

⊙
is an outer aggregation over all permutations of length

n over elements of database D (e.g., min, max, avg). Operator
⊎

is an inner
aggregation over the individual direct distances within a particular chain. Ta-
ble 1 shows examples of various inner aggregation functions. They are also the
aggregation functions we worked with in our preliminary experiments. A more
complex alternative may be a combination of several kinds of aggregations or
distances.

d̂�,n] (x,y) =
⊙

(i1,...,in)∈Dn

⊎
(d (x, i1) , d (i1, i2) , . . . , d (in,y)) (1)

sum(δ0, δ1, . . . , δn) =
∑n

j=0 δj

min(δ0, δ1, . . . , δn) = min {δ0, δ1, . . . , δn}
max(δ0, δ1, . . . , δn) = max {δ0, δ1, . . . , δn}
prod(δ0, δ1, . . . , δn) =

∏n
j=0 δj

iprod(δ0, δ1, . . . , δn) = 1−
∏n

j=0 (1− δj)

Table 1: Examples of inner aggregation
⊎
.

To summarize, we define the data-transitive similarity d̂ as a meta-model
operating on top of a ground similarity model d and a particular database D.
The computation of a single data-transitive distance involves a series of similarity
queries over the database. The computational complexity of the data-transitive
similarity thus involves not just the complexity of d but also the size of the
database |D|. Depending on the implementation, the worst-case time complexity
O(d̂) can vary from O(d) to O(d)O(|D|n), assuming n as a constant or n� |D|.

From the definitions above it immediately follows that data-transitive dis-
tances are not metric distances – not only due to the possibly non-linear com-
bination of the particular ground distances, but mainly due to the database-
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dependent nature of the distance topology (non-uniform distribution of points
in the data universe and its impact on the chain members).

One might say that such advanced relevance constructions should not be
modeled at the level of similarity, as they are part of higher retrieval models closer
to the application level (e.g., a part of content-based recommender system).
However, we want to stress that we intentionally included the data-transitive
similarity into the family of generic pair-wise non-metric similarities. As such, it
can be plugged into any search engine that supports non-metric similarities. This
would not be possible if designed as a proprietary late-fusion retrieval model.

3.1 Implementation

The fundamental problem we have addressed in the data-transitive similarity
design was determining the number of intermediaries (the chain length n) to form
a transitive similarity. Although our model assumes an arbitrary n, determining
the specific value is not a straightforward problem itself. A significant issue may
be that for some objects, there is no intermediary to form transitive similarity.
In general, the number of intermediaries may not be constant, and for different
objects this value needs to be chosen dynamically.

Thus, for our experiment, we have applied a simplification in this regard and
assume that data-transitive similarity has at most one intermediary (i.e., n = 1).
Therefore, we always have a triplet: a query, an intermediary, and a result. This
decision reduces the number of hyperparameters with respect to longer chains
(e.g., number of intermediaries, different aggregation functions). This approach
also has the advantage of a higher level of explainability. For longer chains of
intermediaries, we need to discuss whether each part of the sequence makes sense
for given transitivity. Whereas in the case of a single intermediary, we can argue
with a reasonable certainty whether the query and result are relevant from the
perspective of the intermediary explanation.

The second problem is the transitivity involving duplicates or near-duplicates
in the chain – intermediaries very d-close to the query or to the result. Such
duplicate intermediaries usually do not add any value. Therefore, small distances
d (the first 5% of distance distribution) are not considered (in fact, all such
distances are set to infinity to become disqualified in d̂).

Third, all ground distances are required to be normalized to 0 − 1 because
some aggregations (

⊎
= prod,

⊎
= iprod) require a bounded distance. In our

implementation, we do not implement any optimizations, while to compute the
data-transitive similarity we need to iterate over all database objects in the role
of an intermediary. At the moment, optimizations for reduction of the set of
intermediaries are beyond the subject of our research.

3.2 Open Dataset Testbed

For the open dataset testbed presented in Section 1.1, we considered title, de-
scription, and keywords metadata. Since the original data provided by the Na-
tional Open Data Catalog are in the Czech language, we used the automatic
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English translation [17], followed by the words lemmatization and filtering non-
meaningful words (we consider only nouns, adjectives, verbs, and adverbs). In
addition, we ignored several experimentally detected stop-words (data, dial, ex-
port, etc.). The metadata descriptors were represented in the bag of words model
(BoW) with tf-idf weights.

Over these descriptors, the ground cosine distance was computed as dcos(x,y) =
1 − scos(x,y) (where scos is cosine similarity) for all pairs of objects (all pairs
of datasets in our case). Figure 1 shows the distribution of distances dcos over
this testbed. We can see that most of the datasets are not dcos-similar, and the
testbed exhibits high intrinsic dimensionality [7]. This is due to the relatively
sparse metadata (average about 20 words). For some datasets, some parts, such
as description or keywords are empty; there is only the title description.

Fig. 1: Distance distribution of dcos and d̂min
max transitive similarity

In our experiment, we took only one intermediary, while d̂min
max (Formula 2)

was chosen as the data-transitive similarity function, since it exhibited the most
robust aggregation in our preliminary experiments. Figure 1 shows how the dis-
tribution of d̂min

max-distances is different when compared to dcos. Smaller distances
(below approx. 0.6) are eliminated due to the removal of near-duplicate dataset
pairs (set to 5% closest datasets), as mentioned in the previous subsection. The
rest of the d̂min

max-distance domain is split into two categories representing rel-
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evance (more relevant around 0.7, less relevant around 0.9), with many dcos-
dissimilar datasets moving into the category of more d̂min

max-relevant datasets.

d̂min
max(x,y) = min

∀i∈D
max {d(x, i), d(i,y)} (2)

4 Evaluation

As we have already discussed in [26], the findability evaluation in the open
dataset discovery is complicated from several points of view. The database con-
tains a relatively large number of datasets, but there is no sufficient ground
truth for dataset similarity. To overcome the lack of ground truth, in this paper
we evaluate the concept of relevance which is closer to dataset discovery, rather
than direct context-independent similarity of datasets.

4.1 Methodology

Our evaluation targets the additional value of data-transitive similarity search
over the standard (direct dcos) similarity search. First, the search for similar
datasets using standard dcos-similarity search is performed. Let us represent this
search as a kdNN query, where kd is the number of results. Then, there are kt
results displayed to the user using data-transitive similarity based ktNN query,
while filtering out results of the previous kdNN query. For our experiment, we
assume kd = 100 and kt = 20.

The user (evaluator) is given a list of triplets (query, intermediary, result) and
then evaluates each such triplet as relevant or non-relevant. A triplet is relevant
if the user finds a possible use case for the query dataset and the result dataset
and, at the same time, the intermediary dataset reasonably connects the two
datasets. Let us repeat that the user is only confronted with results that were
not findable by standard (direct) similarity search. A total of 5 users (evaluators)
participated in the evaluation.

During the evaluation, we encountered the problem that some pairs of datasets
are only relevant if we ignore specific fine-grained attributes of the datasets. The
first observed attribute is the information about the publisher, e.g., contracts
of the Ministry of Finance and invoices of the Ministry of Finance. The second
attribute is the time or date of repeatedly published datasets, e.g., the list of
companies for the year 2020. The third attribute is the localization specified in
the datasets, e.g., hospitals in Prague vs. hospitals in Brno. For the evaluation,
we decided to ignore these attributes as they only contribute to fragmentation
of the datasets that are otherwise relevant to each other. However, this problem
might disappear if we consider more than just one intermediary in the data-
transitivity model (subject of future evaluations).

As part of the experiment, we evaluated the relevance of the results for a set of
prepared queries. This set was created based on previous experiments presented
in [26]. A total of 64 transitive results were found for 11 different queries.
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4.2 Results

During the evaluation, we looked at two main criteria: consistency and effective-
ness. For every triplet, we have computed its score as sum of 0 (non-relevant)
and 1 (relevant) ratings of all evaluators. In our case, the score ranges from 0
(all evaluators claim the triplet is non-relevant) to 5 (all evaluators claim the
triplet is relevant). Figure 2 (left) shows the number of triplets with particular
score, Figure 2 (right) shows the number of triplets per data-transitive distance
ranges and distribution of scores inside these ranges.

The consistency is validated based on the evaluators’ agreement on the rel-
evance of the evaluated triplets. Figure 2 (left) shows that in almost 78.13% of
the cases, majority of evaluators (scores 0− 1 and 4− 5) agreed on the triplets’
relevances. This observation confirms that the overall evaluation results are not
just random noise.

Effectiveness is measured as the ratio of relevant datasets to all returned
results. This gives us a measure of how much data-transitive similarity can im-
prove the standard search. At Figure 2 (left), we see that in 57.81% of the cases,
the triplet was marked as relevant by a majority of evaluators (score 4− 5).

Although the overall effectiveness may not seem significant, we must stress
that all the relevant results found were not achievable by the direct similarity
search (as already mentioned in Section 4.1). For 65.63% of the datasets, dcos
distances to query are maximal. We can also notice in Figure 2 (right) that the
data-transitive similarity model complies with the general thesis of similarity
search (more distant datasets are less relevant and vice versa).

Fig. 2: The left figure shows the distribution of triplet ratings (how many triplets
were rated by a particular relevancy score). For example, the score = 3 means
that 3 evaluators thought the triplet was relevant (they rated it 1) and 2 evalua-
tors thought the triplet was not relevant (they rated it 0). The right figure shows
the distribution of ratings according to each data-transitive distance interval.
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4.3 Qualitative Analysis

In Table 2 we see an example of triplet (Q, I,R) that was evaluated as relevant
in our experiment (small data-transitive distance d̂min

max(Q,R) through I). If we
analyze the distance structure, the query dataset (Q) "Floods in the 19th cen-
tury" does not have the "water" keyword in the metadata. However, thanks to
the intermediary "5-year water" dataset (I), we have both "water" and "flood"
in metadata and so the query dataset is transitively similar to the result dataset
(R) "Water reservoirs". In the original similarity (the direct ground distance
dcos), the query Q and the result R datasets have maximum distance; they have
nothing in common. In the data-transitive similarity search, however, the dataset
R is within the first 20 results thanks to the connection with I. The relevance
here can be explained by the fact that reservoirs can affect flooding and so the
dataset R might be useful in flood prevention planning.

Title
Keywords Description
Floods in the 19th century

Q Floods, Environ-
ment, GIS

Flooded areas in a 19th century flood in the Pilsen region.

5-year water
I GIS, Floods, Envi-

ronment
Flooding areas of n-year water in the Pilsen region.

Water reservoirs under the management of the river basin and the forest of the
Czech Republic under the territorial jurisdiction of the river Vltava

R water tanks, water
management

The shp file contains points representing water reservoirs
whose permitted volume of buoyant or accumulated water
exceeds 1 000 000 m3 or to which the Forests of the Czech Re-
public, p. The registers are updated continuously, the dataset
only once a year. The current data can be viewed on the wa-
ter information portal VODA – www.voda.gov.cz.

Table 2: Example of Query, Intermediary, Result triplet: floods vs water. Title,
keywords and description metadata are provided for each dataset.

The second example (Table 3) shows the imbalance of some descriptions,
where the query dataset "Housing Young 2017" description has 3 paragraphs
of text and the result dataset "BUG3 - Economy and Labour Market" descrip-
tion has only one sentence. Although these datasets share some keywords, the
resulting position in ranking is too far when using the direct distance dcos, so
that the user cannot find the dataset. With the data-transitive similarity using
the intermediary "BUG - people and housing" dataset the problem is mitigated.

3 BUG = Brno Urban Grid
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Title
Keywords Description
Housing Young 2017

Q sociology, housing
research, housing
young, housing,
Brno

The main objective of the Youth Housing survey conducted
in 2017 was to identify and describe the housing needs of
young people living in Brno, as well as their preferences in
this area. . . . 3 paragraphs of text here . . .

BUG - people and housing
I Brno urban Grid,

housing, people,
BUG

Datasets from the Brno Urban Grid - theme people and hous-
ing

BUG - Economy and Labour Market
R BUG, labour mar-

ket, economy,
Brno Urban Grid

Datasets from the Brno Urban Grid application - theme of
economy and labour market

Table 3: Example of Query, Intermediary, Result triplet: housing vs labour. Title,
keywords and description metadata are provided for each dataset.

In this case, we are able to explain the relevance between the housing of young
people and the state of the labour market.

5 Conclusion and Future Work

We proposed an extended concept of similarity search by introducing the meta-
model of data-transitive similarity operating on top of a particular similarity
model. In the evaluation focused on the open data domain, we have demon-
strated that the user is able to find relevant datasets that were not findable
using standard (direct) similarity search. Moreover, as the data-transitive simi-
larity is a variant of pair-wise non-metric similarity, it can be plugged into any
search engine that supports non-metric similarities. It also confirms the necessity
of non-metric approaches in complex retrieval tasks, such as the entity discovery.

In the future we plan to investigate more general chains of intermediaries,
as well as internal indexing techniques for the data-transitive similarity compu-
tation itself. We also plan to experiment with other domains that require more
complex explainable similarity approaches.
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