
Data-driven Learned Metric Index:
an Unsupervised Approach?
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Abstract. Metric indexes are traditionally used for organizing unstruc-
tured or complex data to speed up similarity queries. The most widely-
used indexes cluster data or divide space using hyper-planes. While
searching, the mutual distances between objects and the metric prop-
erties allow for the pruning of branches with irrelevant data – this is
usually implemented by utilizing selected anchor objects called pivots.

Recently, we have introduced an alternative to this approach called Lear-
ned Metric Index. In this method, a series of machine learning models
substitute decisions performed on pivots – the query evaluation is then
determined by the predictions of these models. This technique relies upon
a traditional metric index as a template for its own structure – this
dependence on a pre-existing index and the related overhead is the main
drawback of the approach.

In this paper, we propose a data-driven variant of the Learned Metric
Index, which organizes the data using their descriptors directly, thus
eliminating the need for a template. The proposed learned index shows
significant gains in performance over its earlier version, as well as the
established indexing structure M-index.

Keywords: Index structures · Learned index · Unstructured data ·
Content-based search · Metric space · Machine learning.

1 Introduction

Searching within collections of unstructured or complex data (such as images,
audio files or protein structures) is a challenging task. Whereas in structured
data-sets, the order of the data objects is determined using a straightforward
key (e.g., their alphabetical order) and the match to a search filter is objectively
given (e.g., retrieve all records where created on ≤ 2010-04-01), in the realm
of unstructured data, such properties do not exist. Since there is no intrinsic
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ordering to the data, there is no single agreed-upon response to a given search
query.

The issue can be addressed using metric spaces, where the pairwise similarity
of objects can be leveraged to organize the data and formulate search queries.
If we can design a suitable distance function that meets certain criteria (such
as symmetry and triangle inequality), any indexing structure or search algo-
rithm designed for generic metric spaces can be applied to our data, and various
pruning rules can be used to reduce the search space.

The search itself is usually performed using various similarity queries, wherein
we specify a query object and choose the properties of the desired result in
relation to this object (e.g., the k closest objects to the query object – kNN
query, or all objects within a certain range from the query object – range query).
Even after applying the metric spaces and similarity searching methods, a major
challenge remains – since these complex data-sets tend to have a very high
number of intrinsic dimensions [5], the distance computations needed for index
construction and query evaluation are computationally expensive.

This problem can be addressed using an alternative approach – finding the
similarity in large groups of data can be reformulated into a pattern searching
task, which can be solved by machine learning. We have previously introduced
such a solution, using supervised machine learning to imitate the structure of
a pre-existing index, resulting in a hierarchy of several learned models that we
call Learned Metric Index (LMI) [2]. While this approach achieves very good
performance in the query evaluation phase by eliminating costly distance com-
putations, its main downside is obvious – to train such an index, we first need
to construct one of the traditional index structures as a template.

In our current work, we have evolved the LMI’s approach beyond the need
for a pre-existing index built using traditional methods. Instead, we can now
construct the LMI from scratch, using nothing but the pattern recognition ca-
pability of the machine learning models to discern the natural distributions of
the data in the metric space.

To the best of our knowledge, this is a completely novel method for tackling
the problem of indexing unstructured data. This paper describes our approach
and implementation in detail and evaluates its performance, comparing it to the
traditional state-of-the-art indexes and our previous implementations of super-
vised learned indexing.

2 Related work

More and more research work has recently addressed the possibilities of en-
hancing or even replacing standard database index models (B+-trees) with ma-
chine learning [14, 17, 8]. The authors argue that machine learning models can
be trained for the same purpose of answering queries (categorizing a query ob-
ject to the most suitable class, which represents a child node) while presenting
several performance benefits.
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For instance, in inverted indexes, a hierarchical machine learning model is
used to reduce index size at the expense of performance [34, 29]. In cases involv-
ing multidimensional data, learned indexes attempt to approximate the search
to be reasonably efficient. The density distribution of multidimensional data is
approximated to create a new index structure in [31, 33]. Another application of
learned models [24] presents an index named Flood that creates not only a con-
sistently performing index for multidimensional data, but also optimizes both
index and data storage layout. In [18], a learned variation of Bloom filters for
multidimensional data can save a significant portion of space. A wide study [16]
of various algorithms for kNN queries over multidimensional Euclidean spaces
concludes that it is still a research challenge to provide a solution of highly
precise approximate kNN search due to the curse of dimensionality.

We carry on with the proposition of utilizing machine learning to index struc-
tured data and apply it to complex data and metric space model. In this paper
specifically, we follow up on the Learned Metric Index method we introduced
in [2]. Even though we believe that our research is original, the idea of learned
models has been applied before in the domain of similarity searching in metric
data. In [13], ANN-tree was introduced to solve the 1-NN problem for metric
space scenarios. Authors of [22] consequently introduced the FLANN library to
perform the 1-NN search significantly faster than a previous, nearly brute force
implementation.

Recently, a new partitioning procedure focused on nearest neighbor search
performance, called Neural Locality-Sensitive Hashing (Neural LSH) [7], has
been shown to outperform traditional partitioning methods (k-means) consis-
tently. A learned model that approximates bounds on k nearest neighbor dis-
tances and consequently allows precise and memory-efficient computation of re-
verse nearest neighbors has been introduced in [4]. The authors conducted ex-
periments on up to 8-dimensional and low-volume data. Finally, Hünemörder et
al. [11] explored the application of various predictive models to learn an index
for approximate nearest-neighbor queries. Their evaluation on synthetic data as
well as the MNIST data-set further demonstrates the research potential of this
topic.

3 Indexing in metric spaces

A metric spaceM = (D, d) is defined over a universe D of data objects and a dis-
tance function d(·, ·) that satisfies metric postulates. A database X ⊆ D of data
objects forms a collection to be queried by a k-nearest neighbors query (kNN(q)
– k objects closest to the query object q), or the range query (range(q, r) – all
database objects closer to q than the distance r).

To avoid tedious sequential scanning, which is costly on large data-sets or
with an expensive distance function, various indexing structures have been devel-
oped. Firstly, hierarchical structures include variations of the original M-tree [6],
Spatial Approximation Trees [25], or Rank Cover Trees [10]. These structures
divide data objects into groups or clusters, respecting their distribution in space.
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They provide sub-linear search time O(nα), where α ≤ 1 depends on data dis-
tribution. Next, permutations of preselected anchor objects (pivots) and their
prefixes define (Voronoi-like) space cells at bounded costs, so M-index [26] and
PPP-Codes [28] improve search efficiency substantially. Rearrangement of such
cells is applied in [21, 1]. Lastly, independent filtering techniques can be applied
to further eliminate accessing excessive amounts of data objects, e.g. Binary
Sketches for Secondary Filtering [19].

The properties of the metric function (namely symmetry and triangle in-
equality) are typically indispensable for constructing index structures and for
the correctness of search. Learned indexes do not inherently depend on these
properties, so the query evaluation based on predictions can be advantageous
for non-metric distance functions as well.

4 Learned Metric Index

Learned Metric Index (LMI), as introduced in [2], is a hierarchical tree index
structure of nodes containing machine learning models. These models are trained
to search for (i.e., categorize) query objects, which emulates the behaviour of tra-
ditional index nodes. However, instead of determining the objects’ positions ac-
cording to their distances, a query is resolved by applying a series of predictions.
This changes the standard paradigm of index building and query evaluation,
resulting in very different performance characteristics and outperforming tradi-
tional similarity searching methods in many cases, both in terms of efficiency
and effectiveness.

In general, the concept of LMI can be realized in two distinct ways. The first
one involves using a pre-existing index and its data partitioning as labels for
supervised training. In such a case, each data object has a label corresponding
to its position in the original index, i.e., a concatenated list of integer values per
index level. We have examined this variant in [2] and demonstrated that it can
achieve more than competitive performance with state-of-the-art methods.

The other option is to assemble LMI “from scratch” by letting it create its
own meaningful divisions of the data. Such approach exploits the information
embedded in the descriptors of data objects to emulate the similarity function.
This constitutes an unsupervised learning problem, which is the subject of this
paper.

4.1 Training unsupervised LMI

Training an unsupervised LMI requires: (i) digital fingerprint of objects to train
on, and (ii) the number of clusters each model is expected to create, which defines
the shape of the learned index structure. The training procedure of the whole
LMI then starts with the root model, which is trained on the entirety of the given
data-set, while its descendants are trained on smaller and smaller portions of the
data as we dive deeper into the structure. The training is therefore sequential –
the input of every model depends on the output of its parent.
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Algorithm 1: Unsupervised Learned Metric Index training

Input: a data-set X, max. depth H (tree height),
max. number of children per level A[]

Output: a tree of trained models T [][]
part[1][1] = X;
for lvl ← 1 to H do

for chld ← 1 to A[lvl] do
if part[lvl][chld] = ∅ then

continue
end
M ← new model trained on part[lvl ][chld ] clustering the data into
A[lvl] groups;

if lvl < H then
for obj ∈ part[lvl][chld] do

p = M .predict(obj );
part[lvl+1][p].add(obj );

end

end
T [lvl ][chld ] = M ;

end

end
return T;

Algorithm 1 formally describes the entire training procedure. During the
training, each model is presented with a clustering problem. The objective is to
organize the data into a pre-specified number of groups according to their mutual
similarity obtained from the descriptors. Each training epoch re-organizes the
data to allow mutually similar objects to end up in the same cluster. A single
instance of LMI is then created by connecting the parent models with their
children, resulting in a tree structure.

4.2 Searching in LMI

We define the overall goal of LMI as finding as many of the query’s k nearest
neighbors as possible in the shortest time. The output of every learned model
in the searching (inference) phase is a probability distribution, which can be
viewed as the query’s correspondence to each of the classes (i.e., child nodes). We
expect LMI to be able to assign higher probabilities (and therefore higher search
priorities) to categories where the query object and its nearest neighbors reside.
The priority queue can then be formed in a näıve manner by sorting the child
nodes based on the probabilities assigned by their parent model. This contrasts
with traditional indexing methods, which need to calculate the distances to all
of the child objects to form their priority queues.

The searching process of LMI is shown in Figure 1. From the LMI’s point of
view, an answer to a query is gradually updated with objects from the visited
leaf nodes. Note that the small sub-sections of the data-set contained within the
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Root model

Model 1

Bucket 1.1

Model 2 Model 3 Model 4
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Lvl 1

Lvl 2

Bucket 1.2 Bucket 4.3...

In: Query object
Out: Distribution function of
probabilities for each category In: Query classified as

category 4

Out: Predictions of categories

In: Query classified as
category 3
Out: Candidate answer

Fig. 1. Example of a few initial steps of searching within a two-level LMI with four
models on Level 1. The search continues until a stop condition is met.

leaf nodes are searched linearly – once a leaf node gets to the top of the priority
queue, all of its objects are evaluated (i.e., added to the answer or discarded
based on their distance) and the leaf node is removed from the queue.

4.3 Machine learning models

In the previous sections, we introduced a basic version of unsupervised LMI
wherein we can use the machine learning models to build the index, and then
use the probability outputs of these models to search the resulting structure.

However, in practice, very few unsupervised algorithms can operate proba-
bilistically. To use a non-probabilistic unsupervised algorithm, we need to modify
the approach in one of two ways. The first option is to build the structure using
Algorithm 1, and use distance calculations for searching in the case of distance-
based algorithms. The second option is to substitute the distance function with
a supervised machine learning model. However, this second approach requires
a modification of the building phase described by Algorithm 1, splitting the
training into two steps1.

We selected two basic machine learning algorithms to implement unsuper-
vised LMI – K-Means and Gaussian Mixture Models (GMM).

K-Means is a well-established distance-based algorithm, which requires the
Euclidean space to suitably place cluster centers – so-called centroids – within the
data. The algorithm runs until a local optimum is reached by iteratively recal-
culating the centroids’ position to minimize the sum of squares within clusters.
Logistic Regression was selected as the supervised algorithm for the two-step
version of this process.

Gaussian Mixture Model (GMM) employs a more flexible approach to
data modelling, using soft clustering instead of the hard cluster assignments

1 This training procedure consists of two separate phases: one for clustering the data,
and the second for their categorization. For every level, the data is firstly clustered in
the same way as described above. Subsequently, a supervised categorization machine
learning algorithm is trained on the relevant portion of the data and the clustered
labels.
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Fig. 2. Index architecture: 2 levels and 100
categories per model for the 1-million data-
sets, and reduced to 71 categories for Mo-
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Fig. 3. Histogram of object distribu-
tion in the buckets (distance-based
K-Means, Profiset).

made by K-Means. As its name suggests, GMM assumes that each data point
could have been generated by any number of its k Multi-variate Gaussian dis-
tributions (k being the chosen number of clusters) with a given probability. To
evaluate this probability, we must approximate the posterior probability of an
object belonging to a cluster, given the observed data. Bayesian GMM is an ex-
tension of GMM, which estimates the object’s cluster membership by Bayesian
Variational Inference instead of calculating the marginal probabilities.

As a result, we evaluate four separate algorithms in the experimental phase –
distance-based K-Means, K-Means with Logistic Regression, GMM and Bayesian
GMM. The index-building and searching operations were implemented in Python,
and algorithms used to prototype unsupervised LMI came from the scikit-learn
library [30] with the exception of K-means with Logistic regression, where we
employed an efficient GPU implementation of K-means [12].

5 Experiments

We have executed a wide range of experiments with three different multimedia
data-sets: CoPhIR, Profiset and MoCap. CoPhIR [3] is a data collection of 282-
dimensional vectors derived from five visual descriptors of images. Profiset [27]
is a series of 4096-dimensional vectors extracted from Photo-stock images us-
ing a convolutional network. Finally, MoCap is HDM05 data-set [23] that con-
sists of sequences of 3D skeleton poses, which were segmented to extract 4096-
dimensional descriptors using AlexNet [15]. The data-set sizes were fixed at
1-million objects for CoPhIR and Profiset. MoCap contains 354,893 segments.

In contrast with the supervised version of LMI, unsupervised LMI has a
unique architectural flexibility provided by the unsupervised mode of training,
where one can specify the index architecture via the number of clusters per
each model and thus optimize the performance. As a results, we chose to use
a single architectural configuration throughout the experiments, consisting of
two levels with a fixed number of nodes, as detailed in Figure 2. As opposed to
the traditional indexing structures, such as M-tree or M-index, LMI does not



8 T. Slanináková et al.

Bayesian K-Means K-Means Baselines
GMM GMM (LR) (dist.) LMI M-index

build t. CoPhIR 0.305 0.351 1.926 0.639 2.670 0.330
(h) Profiset 1.419 1.553 9.554 3.698 0.230 0.490

MoCap 0.351 0.467 2.200 0.627 0.390 0.170

memory CoPhIR 10.0 13.6 15.6 8.6 150.0 3.4
(gb) Profiset 74.4 86.6 75.0 85.0 150.0 20.7

MoCap 55.5 71.0 32.0 49.0 85.0 6.4
Table 1. Building costs of various unsupervised setups and baselines. Unsupervised
experiments were executed on a machine with 1 CPU – Intel Xeon E5-2650v2 2.60GHz.
K-Means (LR) utilized GPU - nVidia Tesla T4 16GB. LMI baseline used Intel Xeon
Gold 6230 2.10GHz. M-index baseline used Intel Xeon E5-2620 2.00GHz.

limit leaf node capacity. However, this fact does not cause the distribution of
objects within buckets to be uncontrollably skewed, as Figure 3 shows. The vast
majority of the bucket occupancies is within the 75-125 interval, guaranteeing
similar sequential search costs in the final part. This property allows us to skip
searching of the leaf nodes in evaluation, and focus on the performance of the
internal index navigation, where the various indexes truly differ.

In each of the experiments, we perform a 30-NN query for 1,000 randomly
chosen query objects. The performance is measured in terms of recall – i.e., how
many of the actual 30 nearest neighbors are returned when visiting a limited
portion of data-set. We set such search limits (stop-conditions) as increasing
thresholds spanning from 0.05% of the indexing structure searched (the lowest
stop-condition) to 75% searched (the highest stop-condition).2 As is the case
with all indexes, we are primarily interested in optimizing the trade-off between
recall and the searching time (i.e., the time needed to evaluate a query).

5.1 Building costs

To provide a clear comparison of various indexes, we have to consider the costs
of their construction. Table 1 documents the RAM usage and time required to
build each of LMIs and M-index.

The table shows that the construction cost of a given setup is strongly in-
fluenced by the data-set dimensionality, which is consistent with the results ob-
served in [2]. Specifically, the dimensionality of Profiset and MoCap descriptors
is almost 15 times that of the CoPhIR data-set (282 vs 4096 features), which re-
sults in greater memory and building time requirements. The amount of the data
present in the data-set influences the cost as well – in the case of MoCap, the
number of objects the structure has to index is about one-third of the amount
of Profiset, resulting in shorter building times and lower memory requirements.

2 Full enumeration of stop-conditions used: 0.05%, 0.1%, 0.3%, 0.5%, 1%, 5%, 10%,
20%, 30%, 50% and 75% of the data-set size.
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Covariance type Initialization alg. Prior type No. init. Max. iters

GMM full, spher., diag, tied K-Means, rand. - - 1,2,5
Bayesian GMM full, spher., diag, tied K-Means, rand. process, distr. - 1,2
K-Means (LR) - - - 5,10,15,20 5,10,15,20
K-Means (d.) - - - 1,5,10 5,10,25

Table 2. The hyperparameters and their various settings for all four implemented
algorithms. The highlighted values enabled the models to reach the best performance
on majority of the data-sets. For further details, see documentation of scikit-learn [30].

The results show that the least time-consuming LMI models are GMM and
Bayesian GMM. On the other hand, the most time-consuming model is K-Means
with Logistic regression due to its two-step training design. In this case, the
time expenditure can be attributed mainly to the second (supervised) part of
the training (Logistic regression), which does not have the advantage of the
time-efficient GPU-optimized K-Means implementation. In comparison with the
building costs of the supervised LMI baseline, it appears that the unsupervised
models exhibit lower RAM usage in all cases.

M-index requires the least time and memory out of all the examined indexes.
Its performance in terms of building costs, compared to the LMI models, can
be justified primarily by the fact that M-index is a mature index with many
heuristics developed over the years to improve its baseline performance, which
provides it with a considerable advantage over our newly-developed index.

5.2 Tuning of learned models

In all of the machine learning models, we identified several hyperparameters that
influence the quality of the run in a major way – we list them in Table 2.

In Mixture models, i.e., GMM and Bayesian GMM, Covariance type influ-
ences the shape of the covariance matrix, and whether each cluster has its own
covariance matrix, or all components share a common one. The initialization al-
gorithm represents the pre-training initialization procedure. Bayesian GMM has
one extra hyperparameter, Prior type, which influences the initial setting of the
weight concentration prior. In the case of the K-Means algorithms, we consid-
ered different Numbers of initializations, where we let the algorithm run multiple
times with different initialization seeds to avoid stoppage in local optimum.

We have conducted more than a hundred trials with different combinations
of data-sets and hyperparameter values. The best performing parameter setups
per model were selected for experimental evaluation. We have chosen the best-
performing setups to be the ones that achieve 90% recall for the lowest possible
stop-condition, in the shortest searching time.

5.3 Results

Four unsupervised machine learning algorithms were selected, as described in
Section 4.3 to test the capabilities of an unsupervised approach experimentally.
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Fig. 4. Comparison between the recall of unsupervised LMI models, the best supervised
setup from Antol et al. [2] (Sup-LMI), and M-index. The X-axis of the graphs on the
left spans 30% of the total index size.

Two of them (GMM, BayesianGMM ) represent a standard application of LMI
unsupervised training and searching algorithm for data without labels. The third
(K-Means (d.)) is constructed using unsupervised clustering combined with stan-
dard distance-based searching. The final one (K-Means (LR)) involves a training
approach that combines unsupervised clustering and supervised learning using
logistic regression. Figure 4 displays the achieved recall using two measures –
the percentage of the structure searched and the time needed to evaluate one
query. We compare the results of unsupervised LMI with two benchmarks: the
best-performing M-index3 and the supervised LMI4 from our previous work [2].5

3 The configurations of M-index selected as baselines for our three data-sets [2]: M-
index CoPhIR 200, M-index Profiset 2000 and M-index MoCap 2000.

4 Best LMI setups in [2]: Multi-label trained on CoPhIR (M-index 200), Logistic Reg.
trained on Profiset (M-tree 2000) and Neural net. trained on MoCap (M-index 2000).

5 The best performing setup was the one achieving 90% recall in the lowest stop-
condition and in the shortest time.
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Our experiments show that in terms of navigation efficiency (i.e., recall per
number of visited objects – left column), unsupervised indexes fall behind in
the case of CoPhIR, but dominate both baselines in Profiset and MoCap. We
attribute the poor performance seen in CoPhIR to two factors: the length of
descriptors and their origin. CoPhIR’s descriptors are composed of hand-picked
features of the images, such as color histogram, whereas Profiset and MoCap’s
descriptors are extracted from machine learning models. Unsupervised LMI ex-
hibits a better ability to traverse the indexing structure in case of more complex
descriptors of machine-learning origins. In this type of descriptors, the average
gain in recall over the CoPhIR data-set ranges from 4.5% to 13.5% (given the
5% stop-condition), depending on the algorithm used.

The performance difference is much more decisive when comparing time ef-
ficiency. Both of the baselines fall behind the unsupervised LMI setups signifi-
cantly in all three data-sets (see the right column).6 Specifically, the K-Means
unsupervised methods reach 90% recall faster than M-index by a factor of ap-
proximately 70 (e.g., 0.02s vs 1.55s on MoCap) and faster than supervised LMI
by a factor of approximately 8 (e.g., 0.02s vs 0.123s on Profiset).

K-Means with Logistic Regression is reaching the highest recall and
the shortest search time. The index is able to find the relevant objects very
quickly, achieving 90% recall in under 20ms in every data-set. Distance-based
K-Means also exhibits a favourable recall-to-speed trade-off on all of the data-
sets, with performance similar to K-Means trained with the two-step approach.
This setup also outperforms both of the baselines throughout all stop-conditions
on Profiset and MoCap. Mixture models – GMM and BayesianGMM – gen-
erally show worse performance than K-Means-based indexes, and they are only
competitive within the CoPhIR data-set. In most instances, mixture models only
manage to outperform the baselines in the lower stop-conditions (≤ 5%). How-
ever, they stay close behind in the higher stop-conditions in the case of Profiset
and MoCap (except for BayesianGMM in Profiset).

5.4 Summary

We consider results of our experiments to be very encouraging. In the over-
whelming majority of stop-conditions, both of the K-means-based setups were
able to outperform M-index, as well as the best LMI setups from [2]. While
this is true for both of our performance metrics – recall per number of objects
searched and recall per time – the advantage of our unsupervised setups is much
more prominent when considering the time-based metric.

The performance of distance-based K-Means demonstrates that the concept
of LMI can be extended to work with distances instead of probabilities, with
no degradation in performance. Out of all the indexes, the two-step training
method achieved the most promising searching speeds and the highest recall per
percentage of the structure searched in every stop-condition.

6 For the sake of consistency of the environments across indexes, we used the Python
3.6 implementation of M-index from [2].
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The GMM-based indexes perform better than the baselines on lower stop-
conditions, but the performance gain disappears later in the search. As a result,
these indexes still might be preferred in scenarios where one is limited by the
time or the amount of the structure that can be searched, and tolerates lower
recall, possibly in exchange for more favourable building costs.

6 Conclusion

In this paper, we extend the capabilities of the Learned Metric Index – a novel,
machine-learning-based indexing paradigm introduced in [2]. We present a new
means of LMI construction that builds the index from scratch – no pre-existing
index is needed to guide the building process. Our experiments confirm that
building an unsupervised LMI is a viable approach, and clustering algorithms
within LMI create meaningful divisions of the data. In comparison to the for-
merly introduced supervised LMI, the building costs are significantly lower. By
far the most significant benefit of unsupervised LMI is the overall search per-
formance measured as recall in time – our new approach managed to beat both
benchmarks (M-index and supervised LMI) by at least one order of magnitude
in all cases. If we measured performance as recall per portion of the index struc-
ture visited (navigation), unsupervised LMI was superior to both benchmarks by
approximately 10% in two out of the three tested data-sets. On the third data-
set, the unsupervised methods fell behind when searching a larger portion of the
structures. However, even in these cases, the computation speed of the unsuper-
vised LMI outweighs the navigation deficit and reaches all accuracy thresholds
in shorter time.

The performance of unsupervised LMI shown in our experiments invites for
future research. This work has demonstrated the architecture of unsupervised
LMI in a typical domain where similarity is obtained from vectors. These vectors
are extracted directly from the objects’ raw data, which is an ideal scenario
for standard machine learning models. However, other types of complex data,
e.g., protein structures, use different concepts of similarity – this means that
their processing by LMI may not be so straightforward. In these domains, we
need to employ more specialized machine learning models, such as LSTM [9],
Transformer [32], or Word2vec [20] to produce vector data.

Furthermore, there is room for improvement in decreasing the construction
costs by exploring different libraries and environments for the building of LMI.
We also plan to inspect other machine learning models to improve LMI’s pattern
recognition potential even further. Finally, we plan to explore the topics of index
dynamicity (i.e., the ability to locate objects outside of the indexed data-set),
priority queue optimization, testing the LMI on different data-sets from different
domains, and finding suitable hardware setups for LMI operations.

Overall, we view this work as an additional proof that the adoption of ma-
chine learning techniques in similarity searching is worth deep exploration, and
that the concept of Learned Metric Index can provide significantly better results
when it is built without a pre-existing traditional index as a template.
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