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Abstract. In the ongoing multimedia age, search needs become more
variable and challenging to aid. In the area of content-based similarity
search, asking search engines for one or just a few nearest neighbours to
a query does not have to be sufficient to accomplish a challenging search
task. In this work, we investigate a task type where users search for one
particular multimedia object in a large database. Complexity of the task
is empirically demonstrated with a set of experiments and the need for
a larger number of nearest neighbours is discussed. A baseline approach
for finding a larger number of approximate nearest neighbours is tested,
showing potential speed-up with respect to a naive sequential scan. Last
but not least, an open efficiency challenge for metric access methods is
discussed for datasets used in the experiments.
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1 Introduction

Deep learning here, deep learning there, deep learning everywhere! Words that
have come to mind of a multimedia retrieval researcher since 2012. Besides other
retrieval challenges, similarity search [5, 29, 6] has also been significantly affected
by the impressive deep learning paradigm [9]. The cornerstone of the general sim-
ilarity search approach, similarity space (U, σ) consisting of a descriptor universe
U and a similarity measure σ, started to be narrowed to “just” vector spaces
with a cheap bin-to-bin similarity measure used during a deep model training
process. In other words, a similarity of any multimedia data objects x, y is now
often modeled with a cheap similarity function (usually linear time complex-
ity) evaluated for their vector representations vx, vy ∈ Rn obtained from a deep
model1. Regardless of deep learning trends, there still exists a need for querying
a large database for similar objects to a query object, assuming database objects
are mapped to descriptors S ⊂ U . For a query q, applications usually require
a set of most similar objects from a multimedia database. Assuming a popular
approach to model similarity with a distance function δ, two popular similarity
queries are range(vq, θ) = {vo ∈ S|δ(vq, vo) < θ}, and k nearest neighbours query
kNN(vq, S) = {X ⊂ S : |X| = k, ∀vx ∈ X,∀vy ∈ S −X : δ(vq, vx) ≤ δ(vq, vy)}.
1 In the following text, we follow the notation x, vx to formally distinguish objects

and their descriptors, where descriptors are means of object similarity evaluations.
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The aforementioned similarity queries are useful for search needs initiated
with a query object addressing the contents of multimedia objects2. Usually,
users provide either a text query for a text-multimedia cross modal search
approach [14, 22], or an example multimedia object. The ultimate problem is
whether the provided query is good enough to ensure desired objects in the re-
sult set, i.e., in the set of the most similar objects to the query. The problem can
be divided to two sub-problems – whether the user can provide a sufficient query
object (or detailed text description), and whether the system implements a sim-
ilarity model consistent with user expectation of similarity between two objects.
In this paper, we further consider user need aspects [28], but we keep general
formal specification of search needs. Let C be a subset of database objects rep-
resenting some target class/topic. The search problem complexity differs if users
want to find just an arbitrary item x ∈ C (i.e., high precision is sufficient), or
all items from C are required (i.e., high precision and also recall are necessary).
Due to potentially high variability of objects in C, it is way more challenging to
find all dataset instances of the class.

A special variant of the all-instance search task is for |C| → 1, which corre-
sponds to search need for a very narrow class of objects. In extreme case, only
one multimedia object (e.g., image or shot) is required, which is referred to as
known-item search (KIS). Although unique properties of a single searched object
might seem as an advantage for the search engine, users often do not actively
remember all the specific details for query formulation. On the other hand, there
is an assumption that users can rely on (limited) passive knowledge of the known
item when refining and browsing candidate result sets. The passive knowledge
can include also a temporal context of the item in the case of video sequences.
The complexity of a KIS task depends also on the number of similar dataset
objects matching provided (potentially imperfect) query description. For exam-
ple, searching for some specific scene of a surfing person would be way more
easier if there are no other scenes of people surfing in the database. In case there
exist near-duplicates (e.g., some small audio-visual transformations of the target
object), multiple instances could be considered as the correct result. From this
perspective, known-item search can be generalized from |C| = 1 to |C| ≥ 1, but
the set consists just of near-duplicate objects satisfying the need for one searched
multimedia object. This is the main difference from an ad-hoc search task with a
specific narrow search focus, where different objects can fulfill the specification.

In this paper, we argument that known-item search is often very challenging
even with a state-of-the-art text-image search model (demonstrated in Section 3).
In order to find a searched known item, an interactive search approach [27, 25]
is therefore a preferred option as reported by respected evaluation campaigns
[16, 10]. In the last decade, several interactive search systems were designed and
tested [12, 13, 24, 11, 1, 19]. To deal with a known-item search task, users can
either iteratively reformulate queries after unsuccessful inspection of top ranked
items (kNN queries with low k), or, use advanced visualization [4], relevance

2 We consider challenging content-based search cases, where users do not know unique
structured attributes (e.g., filename or ID) of searched multimedia objects.
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feedback [7] or other exploration methods when top ranked result set inspection
fails. With a single query available, a substantial portion of the database has to
be considered for inspection to guarantee a higher chance for success. Therefore,
finding a larger set of (approximate) nearest objects to a query represents a
suitable search step. At the same time, larger numbers of nearest neighbours
represent a challenge for query processing methods.

2 Known-item Search

Imagine a large collection of funny videos, where a user wants to find one partic-
ular scene which made the user laugh for days. Definitely, the user might want
to find this one particular scene again in the future, which would restrict the
set of all funny scenes to one searched instance. Another example might be a
memory of some experience, captured by a wearable camera to a personal lifelog
database [10]. Again, the search need might focus just on the one specific mem-
ory. These examples illustrate that known-item search tasks are natural part of
the set of possible search needs. The tasks are also well-suited for comparative
evaluations [17] and benchmarking as the ground truth is determined by the
one searched item (e.g., image or temporal segment), compared to partially un-
known ground truth of more generally formulated Ad-hoc search tasks evaluated
at TRECVID [3] (KIS tasks used to be evaluated at TRECVID in the past). We
note that the discussed near-duplicates might be a missing part of ground truth
for KIS tasks as well. Nevertheless, in an automatic evaluation of ranked lists
the missing near-duplicates might achieve similar ranks as the available correct
objects and also this approximation issue represents a consistent obstacle for all
compared methods.

2.1 Problem formulation

Known-item search corresponds to a search scenario, where a user has just a
mental picture of an existing multimedia object from a given database. Either the
known object has been seen before, or a specific enough description (potentially
including hand-drawn sketches) of the object was provided to the user. In the
context of this paper, a generalized KIS task can be formulated as:

Definition 1. Let DB be a multimedia collection, the task is to find one t ∈
CT ⊂ DB, where CT contains one known target object and its near-duplicates
differing from the target object by a small audio-visual transformation, negligible
for the search need (e.g., different encoding or minor image enhancement).

For automatic evaluations analyzing ranking of database objects with respect
to a query, the top ranked t ∈ CT is considered, optimistically assuming that
users do not overlook a correct item in a displayed ranked result set. For search
needs targeting just a part of a multimedia object (e.g., segment of a video), the
definition can be modified by using an appropriate data representation unit.
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2.2 Ranking model evaluation

In order to measure known-item search effectiveness of a model (U, δ), a set of
pairs B = {[qi, CTi ]}ni=1 can be created for a multimedia database DB, where
qi represents a user defined query addressing selected CTi ⊂ DB presented in
some convenient form to the user in advance. We remind that near-duplicates
might be missing in ground truth, which limits objects evaluated as correct. For
each query qi, all database objects o ∈ DB are ranked with respect to δ(vqi , vo)
and the rank ri of the top ranked object t ∈ CTi is stored. Either the average
of all ranks ri can be computed, or an empirical cumulative graph detailing
effectiveness for growing rank is reported using

FB(r) =
|{ri : ri ∈ Ranks, ri ≤ r}|

|Ranks|
,

where Ranks represents all obtained top ranks ri for all benchmark pairs [qi, CTi ]
and a tested model (U, δ). For example, see the cumulative graph in Figure 1
illustrating the percentage of findable known items when users browse a ranked
list up to a rank r, provided that a correct item is not overlooked (which is
generally not guaranteed [15]).

3 Experiments

This section presents an evaluation benchmark dataset and several experiments
demonstrating challenges of effective and efficient known-item search.

3.1 Known-item search benchmark set

We analyze the performance of two respected text-image search approaches
CLIP [22] and W2VV++ [14] (its BERT variant [15]) for a benchmark set com-
prising 327 pairs [qi, CTi ], where all sets CTi are subsets of a 20K benchmark im-
age dataset extracted from the V3C1 collection [23]. The search need (i.e., known
item) was represented by one randomly selected image and no near-duplicates
were considered during benchmark construction (i.e., |CTi

| = 1). Free-form text
descriptions (queries) for target images were provided by human annotators.
Each annotator observed a target image for the whole annotation time (i.e., per-
fect memory was assumed). Although the size 20000 objects does not conform
to the idea of big data, it might still represent for example a personal image
database where known-item search can be expected.

Both CLIP and W2VV++ BERT text-image search approaches provide
functions fvisual, ftext for joint image and text embedding to Rn (n=2048 for
BERT, n=640 for CLIP). Using the functions, all database images (including
known items) and text queries qi were transformed to n-dimensional vectors.
For ranking of the 20K images with respect to qi, a similarity model based on
1− σcos(fvisual(o), ftext(qi)) can be utilized to identify the rank of ti ∈ CTi

. For
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all 327 pairs, Figure 1 shows the performance of both compared models, reveal-
ing more effective known-item search performance for the recently released CLIP
model. Nevertheless, there were individual benchmark pairs (about 30%) where
the CLIP model was outperformed by W2VV++ BERT.

Fig. 1. Performance of text-image search models for the benchmark set, first 1000
ranks.

For both models, it is apparent that finding “just” one or ten nearest neigh-
bours is not sufficient to solve all known-item search tasks even for the relatively
small 20K dataset (though the performance of the new CLIP model is impres-
sive!). With 100 nearest neighbours, more than 65% (75% for CLIP) of known
items ti searched by the query qi would be directly findable in the result set.
However, to provide a chance to solve 90% of all tasks by one query, hundreds
of nearest neighbours are necessary for the 20K dataset. There also exist queries
where even thousands of nearest neighbours are not enough. We emphasize that
all the presented numbers are bound to the dataset size, for larger datasets the
numbers of necessary nearest neighbours are significantly higher [15].

With the growing number of the nearest objects it becomes way more difficult
to find the target with sequential result set browsing. Indeed, known-item search
is a challenge that cannot be easily solved with just a single ranked list and scroll
bar (at least yet). On the other hand, efficient construction of a larger candidate
set is a promising first step that can be followed by a plethora of interactive
search approaches. Assuming that the user cannot remember more details to
extend/change the query, there are still options to inspect results for text query
subsets, provide relevance feedback for displayed set of images, browse images
in an exploratory structure, etc. However, these methods are beyond the scope
of this paper.
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3.2 Upper performance estimates for kNN browsing

Before we proceed to a large candidate set selection study in the next section,
we investigate kNN based browsing with small candidate sets to solve KIS tasks
for the small 20K dataset. To analyze the search strategy, we run simulations
for the 327 benchmark pairs and the W2VV++ BERT model.

Each simulated search session started with a text query qi. From the result,
top ranked k items were selected as a display Dj out of which one item qj ∈ Dj

was selected as a new query object for the next display presenting kNN(vqj , S).
This process was repeated until the target item ti was found or the maximal
limit of iterations was reached. The automatic selection (i.e., simulation of user
interaction [8, 7]) of the new query considered two optimistic options based on
kNN(vti , D

′)), where ti ∈ CTi
is the searched target image and D′ are descriptors

of images on the current display. We consider an IDEAL user automatically
selecting as the new query the most similar object from the display D to the
target ti. In addition, we consider also a randomized TOP user, where the new
query object is selected randomly from kNN(vti , D

′)), k = 8. To prevent from
cycles, once selected queries qj were removed from the dataset in a given search
session.

Fig. 2. Browsing simulations using 16 kNN displays, browsing performance (“stairs”)
related to performance of the W2VV++ BERT text search model (first 1000 ranks).

Figure 2 compares the W2VV++ BERT text search model fine-grained rank-
ing (i.e., browsing the original ranked set) with iterative reformulations providing
always 64 nearest objects for one selected query object (IDEAL or TOP) from
the current display. For each iteration, the graph shows the increase of solved
tasks for the whole display at once (therefore the staircase pattern). For the
IDEAL user and |D| = k = 64 the kNN browsing would boost the performance
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compared to the original ranked set. However, the IDEAL user is too optimistic,
real users are not 100% consistent with the similarity model. Furthermore, for
smaller display size |D| = 8, even the IDEAL user performance is worse than the
original ranking. For the randomized TOP user and display size 64, the perfor-
mance of kNN browsing has a similar performance effect as sequential search of
the original ranked list. However, even the randomized TOP user is still rather
optimistic, real users may select from a display also less similar items to ti ∈ CTi

.

To sum up the simulations, kNN based browsing with IDEAL selections and
small k = 8 is not effective enough, while, for k = 64, such browsing would be a
competitive strategy with respect to the original ranking. However, to the best
of our knowledge selections by real users are usually not ideal which decreases
recall gains by the kNN browsing strategy. The effect of less optimal selections is
illustrated by the performance drop between IDEAL and TOP users in Figure 2.
kNN browsing by the TOP user and k = 64 resulted in “just” similar effectiveness
as sequential browsing of the original ranked list, where users do not have to
select a good example query in each iteration. In other words, top ranked 1000
items for a text query could be browsed directly. For more effective browsing,
advanced models based on relevance feedback were proposed [7], maintaining
relevance scores for all objects in the database. In order to make the maintenance
process more efficient, a larger candidate set can be selected for the models (e.g.,
10% of top ranked items guaranteeing 90% of searched items).

3.3 A baseline study for efficient candidate set selection

In order to find top k nearest neighbours in a high-dimensional space efficiently,
one popular option is dimension reduction. Figure 3 shows a comparison of di-
mension reduction techniques [21] for both models CLIP and W2VV++ BERT.
We consider principal component analysis with data centering as a first step
(PCA) and without centering using only Singular Value Decomposition (SVD).
We compare effects of both approaches, provided that PCA might harm data by
subtracting mean values to center (normalized) data vectors. The graph shows
that reduction of the dimension to 128 does not affect the performance of the
BERT variant regardless the reduction technique. However, the benefits of the
CLIP model seem to vanish with the dimension reduction using SVD. Further-
more, PCA reduction to 128 dimensions (or even 256) significantly deteriorated
the performance of the CLIP model which might be caused by specific properties
of the text-image similarity space (see the next section).

Focusing just on the W2VV++ BERT model, Figure 4 presents ranking
performance for decreasing number of dimensions selected after SVD. We may
observe that up to 64 dimensions, the performance of the model does not de-
teriorate. In other words, 32 times smaller dataset of descriptors and faster
computation can be achieved with a standard pre-processing technique. Fur-
thermore, even lower dimensional versions are useful for approximate search in
a filter and refine mode. For the data, 50% of the database can be filtered with
the 16 dimensional version of descriptors and the remaining part can be refined
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Fig. 3. Comparison of PCA and SVD for first 1000 ranks.

with the 64 dimensional version. This simple approach would reduce compu-
tation costs using a bin-to-bin measure like −σcos(vx, vy) from 64 · DBSize
to 16 · DBSize + 48 · DBSize/2 bin-to-bin operations. Please note that in-
termediate results for filtering can be re-used for refining and there emerge
additional sorting costs for the refined half of the database. Allowing a small
drop in recall, approximate 1000 most similar objects could be computed by
refining just 10% of the 20K database filtered with 16 dimensional vectors,
resulting in 16 · DBSize + 4.8 · DBSize bin-to-bin operations. At the same
time, the approximate filtering approach still allows easy parallelization of the
computation. We note that a bin-to-bin distance function for the first a di-
mensions of (normalized) data vectors can lower bound the distance for b > a
dimensions (e.g., for a similarity model based on squared Euclidean distance∑a

i=1 (vxi − vyi)
2 ≤

∑b
i=1 (vxi − vyi)

2). Hence an optimal kNN query processing
strategy [26] could be tested instead of a fixed hard filter of x% of the database.

Fig. 4. Performance for decreasing dimensionality of descriptors after SVD. On the
right, the effect of refining of 10% of database filtered with 16 dimensional vectors.
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4 Is there a room for competitive metric indexing?

Using the single-space-for-all approach (e.g., (Rn, σcos)) for various application
domains reminds the motivation of the metric space approach providing one
access method for different metric spaces. The question raised in this section
is, whether general distance-based metric indexing [29, 6] can provide a com-
petitive approach to methods presented in the previous section. Since metric
indexing relies on lower bound estimation LB(vq, vo) = |δ(vp, vq) − δ(vp, vo)|
from precomputed distances between objects vo, vp, vq ∈ Rn, we show distance
distributions for the example models from Section 2. For normalized vectors,
the cosine similarity is transformed to the Euclidean distance using L2(vx, vy) =√

2 · (1− σcos(vx, vy)). Figure 5 shows several L2 distance distributions for CLIP
and W2VV++ BERT models for the 20K benchmark dataset:

– Image-image variant shows the distance distribution histogram for all pairs
of images in the 20K dataset.

– Text-image variant shows the distance distribution histogram for pairs be-
tween all text query vector representations and vectors of all images.

– Text-target variant shows the distance distribution histogram for pairs be-
tween all text query vector representations and their corresponding target
item.

– Distance at rank 2000 variant shows the histogram of distances at rank 2000
from all 327 result sets for all benchmark queries.

Fig. 5. Distance distribution histograms for CLIP and BERT, 20K benchmark dataset
was used. All histograms are normalized, x axis is scaled and does not start at 0.

In the figure, all the selected distance distribution histograms appear in the
right part of the possible spectrum, indicating high intrinsic dimensionality [6].
Whereas the W2VV++ BERT model has a similar distance distribution for
image-image and text-image pairs, for the CLIP model the two histograms are
significantly different. We hypothesise that this inconsistency is caused by dif-
ferent concepts used to design and train the CLIP model. Nevertheless, for both
models the necessary distance from query to the searched item is high as well
as distances between potentially indexed images. For a fixed high k, the dis-
tances at rank k are even higher. This questions filtering power of exact metric
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filtering rules and leads to the need for approximate search methods. Although
there have been proposed and empirically tested efficient approximate search ap-
proaches for metric spaces (e.g., pivot tables [18], permutation approaches [2], or
M-Index [20]), the question is whether metric search methods could outperform
(for the discussed KIS problem and high k) the simple sequential SVD based
filtering approach for W2VV++ BERT (see the previous section) or could deal
with specifics of the CLIP based similarity space. We leave this open question
as well as all the descriptors of the benchmark dataset for the metric indexing
community.

5 Conclusions

In this paper, we focused on the known-item search problem where a larger
number of nearest neighbours may be necessary to achieve a high recall. After
a brief introduction of the problem, experimental evaluations with two state-
of-the-art text-image search models were presented. The difficulty of the task
was demonstrated with a benchmark dataset comprising hundreds of query-
target pairs. An analysis of browsing performance with simulated user actions
provided additional motivation for larger candidate sets. A baseline model for
high-dimensional vectors was studied and an open challenge for metric indexing
community was provided in the form of a new benchmark dataset accessible at
github repository https://github.com/soCzech/KIS-Neighbours.
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