
Progressive Query-driven Entity Resolution

Luca Zecchini[0000−0002−4856−0838]

University of Modena and Reggio Emilia, Italy
luca.zecchini@unimore.it

Abstract. Entity Resolution (ER) aims to detect in a dirty dataset the
records that refer to the same real-world entity, playing a fundamental
role in data cleaning and integration tasks. Often, a data scientist is only
interested in a portion of the dataset (e.g., data exploration); this interest
can be expressed through a query. The traditional batch approach is far
from optimal, since it requires to perform ER on the whole dataset before
executing a query on its cleaned version, performing a huge number of
useless comparisons. This causes a waste of time, resources and money.
Proposed solutions to this problem follow a query-driven approach (per-
form ER only on the useful data) or a progressive one (the entities in
the result are emitted as soon as they are solved), but these two aspects
have never been reconciled. This paper introduces BrewER framework,
which allows to execute clean queries on dirty datasets in a query-driven
and progressive way, thanks to a preliminary filtering and an iteratively
managed sorted list that defines emission priority. Early results obtained
by first BrewER prototype on real-world datasets from different domains
confirm the benefits of this combined solution, paving the way for a new
and more comprehensive approach to ER.

Keywords: Entity Resolution · Data Integration · Data Cleaning.

1 Introduction

Entity Resolution (ER) is a fundamental task for data integration [11], aiming
to detect in a dirty dataset the records (duplicates [10]) that represent the same
real-word object (entity). The duplicates are detected by applying a matching
function (e.g., a trained binary classifier) to each possible pair of records (or to
the pairs formed by records appearing in the same block, if a blocking function
[12] is applied), in order to determine if they refer or not to the same entity (in
the first case, they are referred to as matches).

Once a cluster of matches is found, its records are merged to create a single
consistent record representing the entity (data fusion [7]), removing dataset re-
dundancy. The matches often present missing, wrong or conflicting values; data
fusion is performed through the application of a resolution function, which de-
termines the value to be assigned to each attribute of the entity according to
the aggregation function (e.g., maximum/minimum value, majority voting, etc.)
defined for it by the data scientist.

In concrete situations (e.g., data exploration), a data scientist is often only
interested in a specific portion of the dataset; this interest can be expressed



2 L. Zecchini

through a query. Since performing a query on the dirty dataset may lead to an
inconsistent result, it is necessary to perform ER on the dataset; then, the query
can be executed on the obtained cleaned version. As shown in Figure 1a, all the
entities appearing in the result are returned to the data scientist at the end of
this pipeline.

When computational resources are limited and/or time is a critical compo-
nent, this approach (called batch) is far from optimal, wasting time, resources
and money (e.g., in the case for pay-as-you-go contracts, widely used by cloud
providers) to perform comparisons which are guaranteed to be useless. These
comparisons are required to generate entities with no chance of appearing in the
result (e.g., the query in Figure 2 returns only Canon cameras, so each compar-
ison performed to retrieve an entity whose brand is Nikon is useless and should
be avoided) and cause performance degradation, as the data scientist can only
run the query after all comparisons have been performed.

In order to overcome the described problems, an innovative approach (Figure
1b) must be able to perform clean queries on dirty datasets and it is required to
be both query-driven (i.e., to perform ER only on the portion of data effectively
useful to answer the query, according to the WHERE clauses of the query itself)
and progressive (i.e., to emit the entities appearing in the result as soon as they
are solved, following the ordering expressed by the ORDER BY clause). This is
exactly the aim of BrewER.

Fig. 1: The traditional batch pipeline and the one proposed by BrewER.

2 Related Work

Solutions in literature [4, 6, 5] propose a Query-Driven Approach (QDA) to ER,
executing clean queries on dirty datasets performing comparisons only on the
portion of data relevant for the executed query; however, the adopted techniques
are not suitable for supporting the progressive emission of the results (e.g., the
ORDER BY clause is not managed). On the other hand, even progressive solutions
have been presented [16, 13, 15], but neither of them considers the possibility
of an integration with QDA principles, which is far from trivial. A draft of
combined approach based on a graph structure has been presented in [14], but
it is limited to approximate solutions for a keyword-search scenario. Therefore,
BrewER approach represents a novelty in literature.



Progressive Query-driven Entity Resolution 3

3 BrewER: A Progressive Query-driven ER Framework

BrewER framework for ER reconciles the described approaches, executing clean
queries on dirty datasets in a query-driven and progressive way.

The implementation of the query-driven approach consists of a preliminary
filtering of the blocks, which aims to keep only the blocks that could generate an
entity appearing in the result. BrewER approach to the eventual blocking function
adopted by the user is agnostic; if no blocking is performed, the whole dataset
can be interpreted as a single block. Furthermore, blocks are transitively closed.
If the WHERE clauses of the query are in OR (at the moment, only conjunctive
and disjunctive queries are supported), it is checked that at least one record in
the block satisfies at least one of the defined clauses; on the other hand, if the
clauses are in AND, it is verified that all the clauses, each considered by itself,
are satisfied by at least one record in the block. The records which satisfy at
least one of the clauses are called seed records. The aggregation function for
each attribute is defined by the user; MIN, MAX, AVG, VOTE (majority voting) and
RANDOM are supported, with SUM to be implemented. In case of numeric attributes,
the described filtering is not applied using functions that can generate new values
(i.e., AVG and SUM).

The progressive emission is obtained through an iteratively managed sorted
list (Figure 2) called Ordering List (OL). The records appearing in the blocks
that pass the filtering are marked as unsolved (ER not yet performed) and in-
serted in OL, each one with a list containing the identifiers of its neighbours (i.e.,
the records in the same block). At the beginning of each iteration, the elements in
OL are sorted according to the ordering mode and the attribute, called Ordering
Key (OK), expressed by the ORDER BY clause of the query. Then, the first element
(i.e., the one with the highest emission priority) is checked. If it is marked as un-
solved (2.1a), it is compared with its neighbours (even for the matching function
BrewER adopts an agnostic approach); once identified the cluster of matches, all
the matching elements are removed from OL, while a single element representing
the cluster (with the aggregated OK value), marked as solved, is inserted (2.1b).
If it is marked as solved (2.2a), the resolution function is applied on the repre-
sented cluster: if the obtained entity satisfies the query, it is emitted; otherwise,
it is discarded. Comparisons involve seed neighbours first: if a non-seed does not
match any seed, it can be discarded. Iterations can run until OK is empty or can
be stopped after the emission of k entities (TOP(K) queries).

Optimizations. In case of discordant ordering (MIN/DESC or MAX/ASC), it is
possible to optimize the described algorithm by inserting in OL only the seed
records, while the non-seed records in their blocks only appear in their lists of
neighbours (fewer comparisons). This is possible because if a matching non-seed
neighbour (whose OK value is not therefore sorted in OL) alters the OK value for
the first element, the generated solved record priority is updated by changing
its position when sorting OL at the beginning of the next iteration (delayed
emission), guaranteeing the correctness of the ordering (while in MAX/DESC or
MIN/ASC cases this variant could alter the correct emission ordering).



4 L. Zecchini

Fig. 2: BrewER in action.

4 Evaluation

The evaluation of BrewER, whose implementation is realized in Python, is per-
formed on real-world datasets from different domains (Table 1) with known
ground truth: SIGMOD20 [2, 8] (camera specifications from e-commerce websites,
pre-processed using a variant of the algorithm described in [17]), SIGMOD21 [3]
(USB stick specifications from e-commerce websites) and its superset (both pro-
vided by Altosight [1]), Funding [9] (organizations presenting financing requests).
All strings are put in lowercase and OK values cast to float, filtering out the
records whose OK is null, since they do not alter the emission ordering.

Plots in Figures 3 and 4 show the early results, in terms of progressive query
recall (number of emitted entities / size of the result set) after x performed com-
parisons (ground truth as matching function), obtained computing mean values
on batches of 20 queries (both for conjunctive and disjunctive case), selected as
the ones emitting most entities out of wider batches of at least 50 queries. Val-
ues for the considered attributes are randomly selected from lists containing the
most common ones. Figure 3 clearly shows the progressive nature of BrewER and
highlights its potential in anticipating emissions, considering as batch baseline
an adapted version of QDA [5]. When progressiveness is lower because of delayed
emissions (discordant case), optimized algorithm generates a further significant
reduction of the comparisons (Figure 4; analogous plots for disjunctive case).

Table 1: Characteristics of the selected datasets.
Name Records Duplicates Entities (Mean Size) Attributes Ordering Key

SIGMOD20 [8, 17] 13.58k 12.01k 3.06k (4.439) 5 Megapixels

SIGMOD21 1.12k 1.08k 190 (5.879) 5 Price

Altosight 12.47k 12.44k 453 (27.534) 5 Price

Funding [9] 17.46k 16.70k 3.11k (5.609) 18 Amount



Progressive Query-driven Entity Resolution 5

(a) SIGMOD20
Brand AND Model
Brand OR Brand

(b) SIGMOD21
Brand AND Size
Brand OR Brand

(c) Altosight
Brand AND Size
Brand OR Brand

(d) Funding
Source AND Legal Name

Source OR Source

Fig. 3: Progressive query recall in MAX/DESC and MIN/ASC cases (no blocking).

(a) SIGMOD20
Brand AND Model

(b) SIGMOD21
Brand AND Size

(c) Altosight
Brand AND Size

(d) Funding
Source AND Legal Name

Fig. 4: Progressive query recall in MAX/ASC and MIN/DESC cases (no blocking).

5 Conclusions and next steps

Early results confirm the benefits of the approach adopted by BrewER, in terms
both of reduction of performed comparisons and of progressive emission of the
results, paving the way for new and more comprehensive solutions to ER tasks.

BrewER has a lot of room for improvement (the implementation itself needs to
be optimized, even considering the migration to a faster language), with signifi-
cant scenarios to be deepened and integrated in the framework; as for discordant
case and non-seed record comparisons, it is fundamental to find out and avoid
all situations causing useless comparisons. Benefits have to be evaluated in case
of blocking: the actual agnostic approach is considered as a strength, since it al-
lows to combine BrewER with the most innovative solutions in this field (the same
happens for matching functions), but even the possibility of including blocking
itself in the progressive pipeline has to be investigated. Cases to be studied are
that of TOP(K) queries (supposed to take full advantage from this approach)
and that of temporal series, while missing value imputation, together with the
possibility of keeping track of executed queries, can turn BrewER into a powerful
data preparation tool, leading to a progressive cleaning of the dataset. Further-
more, since ER can be seen as a case of binary classification, BrewER impact is
not strictly bound to this field, and it is important to study how to extend the
presented techniques to other classification tasks.

BrewER is going to be presented and further explored in a dedicated research
paper, containing the formalized algorithm and new experiments covering some
of these cases; the code will be made available at the time of its publication.



6 L. Zecchini

References

1. Altosight Website.
https://altosight.com/

2. SIGMOD 2020 Programming Contest Website.
http://www.inf.uniroma3.it/db/sigmod2020contest/

3. SIGMOD 2021 Programming Contest Website.
https://dbgroup.ing.unimo.it/sigmod21contest/

4. Altwaijry, H., Kalashnikov, D.V., Mehrotra, S.: Query-Driven Approach
to Entity Resolution. Proc. VLDB Endow. 6(14), 1846–1857 (2013).
https://doi.org/10.14778/2556549.2556567

5. Altwaijry, H., Kalashnikov, D.V., Mehrotra, S.: QDA: A Query-Driven Approach
to Entity Resolution. IEEE Trans. Knowl. Data Eng. 29(2), 402–417 (2017).
https://doi.org/10.1109/TKDE.2016.2623607

6. Altwaijry, H., Mehrotra, S., Kalashnikov, D.V.: QuERy: A Framework for Integrat-
ing Entity Resolution with Query Processing. Proc. VLDB Endow. 9(3), 120–131
(2015). https://doi.org/10.14778/2850583.2850587

7. Bleiholder, J., Naumann, F.: Data fusion. ACM Comput. Surv. 41(1), 1:1–1:41
(2008). https://doi.org/10.1145/1456650.1456651

8. Crescenzi, V., De Angelis, A., Firmani, D., Mazzei, M., Merialdo, P., Piai, F.,
Srivastava, D.: Alaska: A Flexible Benchmark for Data Integration Tasks. CoRR
abs/2101.11259 (2021), https://arxiv.org/abs/2101.11259

9. Deng, D., Tao, W., Abedjan, Z., Elmagarmid, A.K., Ilyas, I.F., Li, G., Madden,
S., Ouzzani, M., Stonebraker, M., Tang, N.: Unsupervised String Transformation
Learning for Entity Consolidation. In: ICDE 2019. pp. 196–207. IEEE (2019).
https://doi.org/10.1109/ICDE.2019.00026

10. Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate Record De-
tection: A Survey. IEEE Trans. Knowl. Data Eng. 19(1), 1–16 (2007).
https://doi.org/10.1109/TKDE.2007.250581

11. Papadakis, G., Ioannou, E., Thanos, E., Palpanas, T.: The Four Generations of
Entity Resolution. Synthesis Lectures on Data Management, Morgan & Claypool
Publishers (2021). https://doi.org/10.2200/S01067ED1V01Y202012DTM064

12. Papadakis, G., Skoutas, D., Thanos, E., Palpanas, T.: Blocking and Filtering Tech-
niques for Entity Resolution: A Survey. ACM Comput. Surv. 53(2), 31:1–31:42
(2020). https://doi.org/10.1145/3377455

13. Papenbrock, T., Heise, A., Naumann, F.: Progressive Duplicate De-
tection. IEEE Trans. Knowl. Data Eng. 27(5), 1316–1329 (2015).
https://doi.org/10.1109/TKDE.2014.2359666

14. Pietrangelo, A., Simonini, G., Bergamaschi, S., Naumann, F., Koumarelas, I.K.:
Towards Progressive Search-driven Entity Resolution. In: SEBD 2018. CEUR
Workshop Proceedings, vol. 2161. CEUR-WS.org (2018), http://ceur-ws.org/Vol-
2161/paper16.pdf

15. Simonini, G., Papadakis, G., Palpanas, T., Bergamaschi, S.: Schema-Agnostic
Progressive Entity Resolution. IEEE Trans. Knowl. Data Eng. 31(6), 1208–1221
(2019). https://doi.org/10.1109/TKDE.2018.2852763

16. Whang, S.E., Marmaros, D., Garcia-Molina, H.: Pay-As-You-Go Entity
Resolution. IEEE Trans. Knowl. Data Eng. 25(5), 1111–1124 (2013).
https://doi.org/10.1109/TKDE.2012.43

17. Zecchini, L., Simonini, G., Bergamaschi, S.: Entity Resolution on Camera Records
Without Machine Learning. In: DI2KG@VLDB 2020. CEUR Workshop Proceed-
ings, vol. 2726. CEUR-WS.org (2020), http://ceur-ws.org/Vol-2726/paper3.pdf


