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Abstract. Much attention has been given in the research literature to
the study of distance-preserving random projections of discrete data
sets, the limitations of which are established by the classical Johnson-
Lindenstrauss existence lemma. In this theoretical paper, we analyze the
effect of random projection on a natural measure of the local intrinsic
dimensionality (LID) of smooth distance distributions in the Euclidean
setting. The main contribution of the paper consists of upper and lower
bounds on the LID in the vicinity of a reference point after random
projection. The bounds depend only on the LID in the original data
domain and the target dimension of the projection; as the difference
between the target and intrinsic dimensionalities grows, these bounds
converge to the LID of the original domain. The paper concludes with a
brief discussion of the implications for applications in databases, machine
learning and data mining.

1 Introduction

In an attempt to alleviate the effects of high dimensionality, and thereby im-
prove the discriminability of data, simpler representations of the data are often
sought by means of a number of supervised or unsupervised learning techniques.
One of the earliest and most well-established simplification strategies is dimen-
sional reduction, which seeks a projection to a lower-dimensional subspace that
minimizes the distortion of the data. Dimensional reduction has applications
throughout machine learning and data mining: these include feature extraction,
such as in PCA and its variants [6, 39]; multidimensional scaling [38, 41]; manifold
learning [38, 40, 42]; and regression-based similarity learning [43].

Among the various approaches to dimensional reduction, much attention has
been given to the study of projections that approximately preserve all pairwise
distances within discrete point sets. The limitations of such projections have been
established by the classical Johnson-Lindenstrauss (JL) existence lemma [30],
which can be stated as follows: given some distortion threshold 0 < ε < 1, a set
of n points in Rm, and a target dimension t > (8 lnn)/ε2, there exists a linear
projection f : Rm → Rt such that

(1− ε) · ‖u− v‖2 ≤ ‖f(u)− f(v)‖2 ≤ (1 + ε) · ‖u− v‖2
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for all pairs of points u and v in the set. This bound on the target dimension has
been shown to be asymptotically worst-case optimal for linear projection [33].

Subsequent research has focused on the determination of data transforms that
satisfy the JL bounds. Early approaches (such as in [11, 16, 29]) were based on
projection to spherically random subspaces; however, the associated transform
matrices were dense and expensive to compute. Achlioptas [1] showed that the
entries of a projection matrix could be randomly selected from among {−1, 0, 1}
so as to satisfy the bounds with high probability (after the introduction of a
scaling factor). More recent work has been devoted to improving the speed and
sparsity of JL transforms [2, 10, 31]. Variants of the JL lemma have also been
applied to subspace- and manifold-structured continuous point sets [4, 5].

In general, dimensional reduction requires that an appropriate dimension
for the reduced space (or approximating manifold) must be either supplied or
learned, ideally so as to minimize the error or loss of information incurred. The
dimension of the surface that best approximates the data can be regarded as an
indication of the intrinsic dimensionality (ID) of the data set, or of the minimum
number of latent variables needed to represent the data. ID thus serves as an
important natural measure of the complexity of data.

Over the past decades, many characterizations of the ID of sets have been
proposed: classical measures (primarily of theoretical interest), including the
Hausdorff dimension, Minkowski-Bouligand or ‘box counting’ dimension, and
packing dimension (for a general reference, see [14, 36]); the correlation dimen-
sion [18]; ‘fractal’ measures of the space-filling capacity or self-similarity of the
data [7, 15, 19]; topological estimation of the basis dimension of the tangent space
of a data manifold from local samples [6, 39]. Projection-based learning methods
such as PCA can produce as a byproduct an estimate of ID.

The aforementioned ID measures can be described as ‘global’, in that they
consider the dimensionality of the set in its entirety. However, when the data set
resides on a collection of manifolds, or is distributed according to a mixture of
underlying models, global measures may not be indicative of the intrinsic dimen-
sionality in all regions of the set. In order to assess the intrinsic dimensionality in
the vicinity of a specified reference point, ‘local’ ID measures have been proposed
that are defined solely in terms of the distances to a set of near neighbors of the
reference point. Expansion models, in particular, assess ID in terms of the rate
at which the number of encountered objects grows as the considered range of
distances expands from the reference location. Such models include the expansion
dimension (ED) [32], the generalized expansion dimension (GED) [23], Levina
and Bickel’s estimator [34], the minimum neighbor distance (MiND) [39], and the
local intrinsic dimenension (LID) [3, 20]. The correlation dimension can also be
regarded as an expansion model, albeit one that takes into account the growth
rates from all points [22, 37]. Local expansion models of ID have also been used
in the analysis of a projection-based heuristic for outlier detection [12], and of
the complexity of search queries in indexing [8, 24–27, 32].

In this paper, we will be concerned with the LID model of intrinsic dimen-
sionality, which can be regarded as an extension of the (generalized) expansion



The Effect of Random Projection on Local Intrinsic Dimensionality 3

Fig. 1: Random projection of the distribution associated with the smooth random
distance variable L, defined as the Euclidean distance from reference point Q to
a sample point X drawn from some domain in Rm. The projection induces a new
random distance variable L⊥, defined as the distance from Q to the projection
of X in a randomly-oriented t-dimensional subspace.

dimension to the statistical setting of smooth distributions over the non-negative
reals [3, 20–22]. Instead of regarding intrinsic dimensionality as a characteristic
of a collection of data points (as evidenced by their distances from a supplied
reference location), the LID is a direct characterization of the complexity of the
underlying distribution itself. With this latter perspective, an original data set
drawn from a metric space defines a sample of distances from this underlying
distribution, from which one can seek the intrinsic dimensionality of the distribu-
tion of distances to some fixed reference location. Note that the model does not
require that the sample data be constrained to lie on a manifold.

The LID formulation can be shown to be equivalent to a formulation of the
indiscriminability of the underlying smooth distance distribution as evidenced
by its cumulative distribution function F . The indiscriminability is modeled as
a function IDF (r) of the distance r ∈ [0,∞), which tends to the local intrinsic
dimension value ID∗F , limr→0+ IDF (r) as the radius r vanishes. ID∗F has been
shown to be equivalent to the notion of the ‘degree’ or ‘index’ in the statistical
theory of extreme values (EVT); indeed, the EVT index has been interpreted
as a form of dimension within statistical contexts [9]. Practical methods that
have been developed within EVT for the estimation of the index, including the
well-known Hill estimator and its variants obtained through maximum likelihood
estimation [3, 28, 34], can all be applied to LID (for a survey, see [17]).

In this theoretical paper, we will be concerned with the effect on LID when
the distance distribution is subjected to a random projection (as illustrated in
Figure 1). As the main contribution of our paper, we prove that under reasonable
assumptions, for the LID formulation for Euclidean distance distributions derived
from a reference location within a global data distribution, a randomly-oriented
linear projection produces a distance distribution (relative to the projective
subspace) whose LID value at the reference location, ID∗F⊥ , satisfies

t · ID∗F
t+ ID∗F

≤ ID∗F⊥ ≤ ID∗F .
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The result indicates that LID is stable under random projection whenever the
projection dimension t significantly exceeds ID∗F , and that stability is lost as t
approaches ID∗F .

Whereas the JL lemma determines a lower limit above which a projection
can always be found so as to (approximately) preserve all pairwise distances,
our result considers the effect of projection on the distribution of distances
from an individual reference location. Bounds on the ID after projection are
also known for the Hausdorff dimension: here, Mattila [35] proved that for
almost all projections of an analytic set E from Rm to the set E⊥ in Rt, the
Hausdorff dimension HD(E⊥) of the projection equals min{HD(E), t}. However,
the Hausdorff dimension is a global measure of ID defined on analytic sets — it
does not give any insight into the problem considered in this paper: the effect of
projection on the local ID of distance distributions, and the discriminability of
distance measures.

The remainder of the paper is organized as follows. In the next section, we
give an overview of LID and its properties. In Section 3, we give a proof of
our main result. For the initial part, we borrow the projection framework and
Chernoff bound employed by [11] in their proof of the JL lemma. In Section 4,
we conclude with a discussion of the implications of the LID projection bounds.

2 Local Intrinsic Dimensionality

In this section, we present an overview of the measure of local ID for distance
distributions as formulated in [21].

2.1 Intrinsic Dimensionality and Indiscriminability

The LID model as first proposed in [20] takes a distributional view of data —
instead of inferring dimensional characteristics from a sample of points, dimen-
sionality is modeled in terms of a distribution of non-negative scalar values, as
one would expect to see from the distances calculated from a reference location
to points generated according to some hidden process.

As a motivating example from m-dimensional Euclidean space, consider the
situation which the volumes V1 and V2 are known for two balls of differing radii
r1 and r2, respectively, centered at a common reference point. The dimension m
can be deduced from the ratios of the volumes and the distances to the reference
point, as follows:

V2
V1

=

(
r2
r1

)m
=⇒ m =

ln(V2/V1)

ln(r2/r1)
.

For finite data sets, GED formulations are obtained by estimating the volume
of balls by the numbers of points they enclose [23]. In contrast, for continuous
real-valued random distance variables, the notion of volume is naturally analogous
to that of probability measure. ID can then be modeled as a function of distance
X = r, by letting the radii of the two balls be r1 = r and r2 = (1 + ε)r, and
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letting ε → 0. The following definition generalizes this notion even further, to
any real-valued function (not necessarily a cumulative distribution function) that
non-zero in the vicinity of r 6= 0.

Definition 1. Let F be a real-valued function that is non-zero over some open
interval containing r ∈ R, r 6= 0. The intrinsic dimensionality of F at r is defined
as

IntrDimF (r) , lim
ε→0

ln (F ((1 + ε)r)/F (r))

ln(1 + ε)
,

whenever the limit exists.

The intrinsic dimensionality of the cumulative distribution function F of a
distance distribution has also been shown in [20, 21] to be equivalent to a measure
of its indiscriminability. The discriminability of a random distance variable X is
assessed in terms of the relative rate at which probability measure increases as
the distance increases.

Definition 2. Let F be a real-valued function that is non-zero over some open
interval containing r ∈ R, r 6= 0. The indiscriminability of F at r is defined as

InDiscrF (r) , lim
ε→0

F ((1 + ε)r)− F (r)

ε · F (r)
,

whenever the limit exists.

The following fundamental theorem adapted from [21] shows that for distance
distributions with continuously differentiable cumulative distribution functions,
the notions of indiscriminability and intrinsic dimensionality are in fact one
and the same. The proof follows by applying l’Hôpital’s rule to the limits in
Definitions 1 and 2.

Theorem 1 ([21]). Let F be a real-valued function that is non-zero over some
open interval containing r ∈ R, r 6= 0. If F is continuously differentiable at r,
then

IDF (r) ,
r · F ′(r)
F (r)

= IntrDimF (r) = InDiscrF (r).

When considering the local intrinsic dimensionality of a distance distribution,
the question arises as to how the choice of r should be made. Asymptotically, as
the number of data samples rise, for any fixed positive integer k the k-nearest
neighbor radius can be seen to tend to zero. For this reason, we are especially
interested in the case where r → 0. Accordingly, we define the local intrinsic
dimensionality (LID) to be the limit of the indiscriminability as r → 0, whenever
the limit exists:

ID∗F , lim
r→0+

IDF (r) .
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2.2 Two Properties of Local ID

We now state (without proof) two technical results from [20] needed for the proof
of the main theorem of this paper.

In the context of distance distributions with smooth cumulative distribu-
tion functions, the indiscriminability of a cumulative distribution function after
transformation can be decomposed into two factors: the indiscriminability of the
cumulative distribution function before transformation, and the indiscriminability
of the transform itself.

Theorem 2 ([20]). Let g be a real-valued function that is non-zero and contin-
uously differentiable over some open interval containing r ∈ R, except perhaps
at r itself. Let f be a real-valued function that is non-zero and continuously
differentiable over some open interval containing g(r) ∈ R, except perhaps at g(r)
itself. Then

IDf◦g(r) = IDg(r) · IDf (g(r))

whenever IDg(r) and IDf (g(r)) are defined. If r = f(r) = g(r) = 0, then

ID∗f◦g = ID∗f · ID
∗
g

whenever ID∗f and ID∗g are defined.

The second technical result needed establishes upper and lower bounds on
the expansion of probability measure over a fixed range of distances, in terms of
upper and lower bounds on LID values over the range.

Theorem 3 ([20]). Let F be a real-valued function that is non-zero and con-
tinuously differentiable over some open interval containing [a, b] ⊂ R, where
0 < a ≤ b. Let IDF (a, b) and IDF (a, b) be the supremum and infimum of IDF (r)
taken over the range r ∈ [a, b]. Then(

b

a

)IDF (a,b)

≤ F (b)

F (a)
≤
(
b

a

)IDF (a,b)

.

3 Intrinsic Dimensionality after Projection

In this section, as the main contribution of this paper, we examine the effect of
random projection on the distribution of distances to a reference point induced
by a data distribution in Euclidean space. In particular, we prove the following
upper and lower bounds on the LID of the reference point after projection of the
data distribution to a t-dimensional subspace (which we will refer to as ID∗F⊥),
in terms of both t and the original LID value (which we will refer to as ID∗F ).

Theorem 4. Let L be a random variable representing the Euclidean distance
from some fixed reference point Q to a randomly-generated point X ∈ Rm. Also,
let L⊥ be the random variable representing the Euclidean distance between the
images of these points under a uniform random projection ψ : Rm → Rt to an
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arbitrarily-oriented subspace of target dimension t < m. Let F and F⊥ be the
respective cumulative distribution functions of L and L⊥. If there exists some
ε > 0 such that both F and F⊥ are continuously differentiable over the interval
(0, ε), and if the limits ID∗F and ID∗F⊥ both exist, then

t · ID∗F
t+ ID∗F

≤ ID∗F⊥ ≤ ID∗F .

It should be emphasized that the theorem is a statement concerning the
distribution of L⊥, and not the random projection of a particular fixed data set.
The random variable L⊥ follows the distribution of distances to Q obtained when
generating a data point, and then subjecting the point to a random projection
before measuring its distance to Q (see Figure 1). We do not reason in terms of
collections of data samples, but rather on the effect of projection on the distance
to Q of a single data sample.

3.1 Random Projection

For the initial part of our proof, we borrow the projection framework and Chernoff
error bound formula employed by Dasgupta and Gupta [11] in their proof of
the Johnson-Lindenstrauss Theorem (an excellent treatment of which can also
be found in [13]). However, instead of using their framework to analyze the
probability of obtaining a low-distortion embedding of a fixed data set, we will
use it to bound the growth rates within neighborhoods of the reference point
before and after projection.

Without loss of generality, we may assume that our reference point Q coincides
with the origin of our original Euclidean space Rm. Under this assumption, all
the distances of interest coincide with the length of randomly-generated vectors
from either the original data distribution, or the data distribution obtained after
random projection.

The proof framework of [11] considers the effect of random projection on
the length of a fixed vector, by first considering the effect on the associated
normalized (unit length) vector. The authors note that the distribution of lengths
of projection of this fixed unit vector onto a randomly-selected space is the same
as the distribution of the lengths of the projection of a randomly-selected unit
vector onto a fixed space (see Figure 2). Within this setting, the expected length
of projection of a random m-dimensional unit vector to a t-dimensional subspace,
as well as Chernoff-style bounds on the probability of the length varying from
this expected length, are established by the following two lemmas.

Lemma 1 ([11]). Let Y = (Y1, . . . , Ym) be a vector selected uniformly at random
from the unit sphere in Rm. Let Y⊥ ∈ Rt be the projection of Y onto any t of its
coordinates, where 0 < t < m. Then

E[‖Y⊥‖2] =
t

m
.
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Fig. 2: The distribution of lengths of projection of a fixed unit vector onto a
randomly-selected space containing the origin (as shown on the left) is the same
as the distribution of the lengths of the projection of a randomly-selected unit
vector onto a fixed space (as shown on the right).

Proof: Since the Yi are identically distributed, we may without loss of generality
assume that the projection spans the first t coordinates of Rm. Thus,

E[‖Y⊥‖2] = E

[
t∑
i=1

Y 2
i

]
=

t∑
i=1

E[Y 2
i ] = t ·E[Y 2

j ]

for any choice of j ∈ {1, . . . ,m}. Since Y is a unit vector, we also have

1 = E[‖Y ‖2] = E

[
m∑
i=1

Y 2
i

]
= m ·E[Y 2

j ] .

Combining these two expressions, the result follows. �

Lemma 2 ([11]). Let Y = (Y1, . . . , Ym) be a vector selected uniformly at random
from the unit sphere in Rm. Let Y⊥ ∈ Rt be the projection of Y onto any t of its
coordinates, where 0 < t < m. If β < 1, then

Pr

[
‖Y⊥‖2 ≤ β

t

m

]
≤ β

t
2

(
1 +

t(1− β)

m− t

)m−t
2

,

and if β > 1, then

Pr

[
‖Y⊥‖2 ≥ β

t

m

]
≤ β

t
2

(
1 +

t(1− β)

m− t

)m−t
2

.

For details of this latter proof, we refer the reader to [11]. Here, we note only
that the proof of the Chernoff-style bound of Lemma 2 relies heavily on the
expected squared vector length stated in Lemma 1.

3.2 Proof of Theorem 4

Although the proof of our main result makes use of Lemma 2 from [11], the proof
strategy thereafter is quite different, and considerably more complex. Whereas
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their proof of the Johnson-Lindenstrauss lemma made direct use of the Chernoff-
style bound of Lemma 2, our result instead uses Theorem 3 to establish a
Chernoff-style bound in terms of the local IDs of the cumulative distribution
functions associated with L and L⊥. It then relies on a careful choice of the
parameter β so as to guide the convergence of a double-limit process towards the
desired bounds relating ID∗F⊥ to ID∗F .

For any vector X, let Y = X/‖X‖ be the unit vector obtained by the
normalization of X, and let Y⊥ and X⊥ be the projections of X and Y under ψ.

To prove the lower bound, we first consider the cumulative probability of the
squared distance distribution after projection by ψ. Since ψ is not known a priori,
for any squared distance threshold r > 0, this probability can be expressed as

F⊥(
√
r⊥) = Pr[L2

⊥ ≤ r⊥] = Pr[‖X⊥‖2 ≤ r⊥] = Pr

[
‖Y⊥‖2 ≤

r⊥
‖X‖2

]
.

For any choice of 0 < β < 1, this probability can be bounded by

Pr[L2
⊥ ≤ r⊥] = Pr

[
‖Y⊥‖2 ≤

r⊥
‖X‖2

∧
‖Y⊥‖2 ≥ β

t

m

]
+ Pr

[
‖Y⊥‖2 ≤

r⊥
‖X‖2

∧
‖Y⊥‖2 < β

t

m

]
≤ Pr

[
β
t

m
≤ r⊥
‖X‖2

]
+ Pr

[
‖Y⊥‖2 ≤ β

t

m

]
≤ Pr

[
L2 ≤ m

βt
r⊥

]
+ Pr

[
‖Y⊥‖2 ≤ β

t

m

]
≤ Pr

[
L2 ≤ 1

β
r

]
+ Pr

[
‖Y⊥‖2 ≤ β

t

m

]
,

where r⊥ = t
mr, the expected squared length of the projection under ψ of a

vector of squared length r.
Recall that the length of a fixed unit vector after uniform random projection

to a t-dimensional space follows the same distribution as the length of a uniform
random unit vector after a fixed projection to Rt. Lemma 2 can therefore be
applied to yield

Pr[L2
⊥ ≤ r⊥] ≤ Pr

[
L2 ≤ 1

β
r

]
+ β

t
2

(
1 +

t(1− β)

m− t

)m−t
2

≤ Pr[L2 ≤ r/β] + β
t
2

(
e

(1−β)t
m−t

)m−t
2

≤ Pr[L2 ≤ r/β] + β
t
2 e

t
2 (1−β) ≤ Pr[L2 ≤ r/β] + β

t
2 e

t
2 , (1)

since 0 < β < 1.
Since F and F⊥ are assumed to be continuously differentiable over the range

of distances (0, ε), the cumulative distribution functions of L2 and L2
⊥ must also

be continuously differentiable over (0, ε2). Let ID� and ID�⊥ denote the LID
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values of the cumulative distribution functions of L2 and L2
⊥, respectively. We

can therefore apply Theorem 3 to obtain

Pr[L2 ≤ r/β] ≤ Pr[L2 ≤ δ] ·
(

1

β
· r
δ

)ID�δ
, and

Pr[L2
⊥ ≤ r⊥] ≥ Pr[L2

⊥ ≤ δ⊥] ·
(
r⊥
δ⊥

)ID�δ⊥
,

where ID�δ denotes the infimum ID�(0, δ) of ID� over the range [0, δ], and where
ID�δ⊥ denotes the supremum ID�⊥(0, δ⊥) of ID�⊥ over the range [0, δ⊥]. Here,
we assume that the variables have been chosen such δ⊥ = t

mδ, and furthermore
that r/β, r⊥, δ and δ⊥ are all strictly less than ε2 (this latter condition will be
enforced later, as more constraints on these variables are introduced).

Since by construction r⊥
δ⊥

= r
δ , substituting the above inequalities into In-

equality 1 yields

Pr[L2
⊥ ≤ δ⊥] ·

(r
δ

)ID�δ⊥ ≤ Pr[L2 ≤ δ] ·
(

1

β
· r
δ

)ID�δ
+ β

t
2 e

t
2 . (2)

Consider now a new interpolation parameter c, whose role will be explained
below. In terms of r, δ, and c, we fix the parameter β as follows:

β =
(r
δ

)c
.

Note that under these conditions, for any 0 < c < 1 and δ > 0, choosing r such
that 0 < r < δ ensures that 0 < β < 1.

Substitution into Inequality 2 gives

Pr[L2
⊥ ≤ δ⊥] ·

(r
δ

)ID�δ⊥ ≤ Pr[L2 ≤ δ] ·
(r
δ

)(1−c)·ID�δ
+ e

t
2 ·
(r
δ

) ct
2

.

Next, we balance the contributions of the terms on the right-hand side of the
inequality, by choosing c such that (1− c) · ID�δ = ct/2. This produces

Pr[L2
⊥ ≤ δ⊥] ·

(r
δ

)ID�δ⊥ ≤
(
Pr[L2 ≤ δ] + e

t
2

)
·
(r
δ

) ID�δ·(t/2)
ID�δ+t/2 . (3)

Note that from Theorem 1, the existence of the limits ID∗F and ID∗F⊥ implies

that F (
√
δ) = Pr[L ≤

√
δ] > 0 and F⊥(

√
δ⊥) = Pr[L⊥ ≤

√
δ⊥] > 0 whenever δ

and δ⊥ are chosen to be sufficiently small. Taking the logarithms of both sides of
Inequality 3, and dividing by ln(r/δ), leads us to the following:

ID�δ⊥ ≥
ID�δ · (t/2)

ID�δ + t/2
− ln(Pr[L2 ≤ δ] + e

t
2 )

ln(δ/r)
+

ln Pr[L2
⊥ ≤ δ⊥]

ln(δ/r)
.

Fixing δ and δ⊥, and letting r → 0, the inequality has the limit

ID�δ⊥ ≥
ID�δ · (t/2)

ID�δ + t/2
.
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Next, letting δ → 0, we observe that δ⊥ → 0, ID�δ → ID�∗ and ID�δ⊥ → ID�∗⊥,
and thus

ID�∗⊥ ≥
ID�∗ · (t/2)

ID�∗ + t/2
. (4)

Up until now we have assumed that the quantities r/β, r⊥, δ and δ⊥ were
all within the interval (0, ε2). Here, as r → 0 and δ → 0, it can be verified that
the aforementioned quantities all tend to 0 as well, and that this assumption is
therefore eventually justified.

Finally, we transform the bound of Inequality 4 for the ID of the squared
distance distributions (before and after projection) to one involving the original
distributions. It follows from Theorem 2 that IDF = 2 ·ID� and IDF⊥ = 2 ·ID�⊥,
from which we see that the lower bound

ID∗F⊥ ≥
ID∗F ·t
ID∗F +t

holds as required.
We now turn our attention to the proof of the upper bound ID∗F⊥ ≤ ID∗F .

The proof is similar to (but much simpler than) that of the lower bound. Since
‖X‖2 ≥ ‖X⊥‖2, for any r > 0,

Pr[L2 ≤ r] = Pr[‖X‖2 ≤ r] ≤ Pr[‖X⊥‖2 ≤ r] = Pr[L2
⊥ ≤ r] .

Applying Theorem 3, and choosing δ⊥ = δ > r, we obtain

Pr[L2 ≤ δ] ·
(r
δ

)ID�δ ≤ Pr[L2
⊥ ≤ δ] ·

(r
δ

)ID�δ⊥
,

Taking the logarithms of both sides, and dividing by ln(r/δ), leads us to:

ID�δ ≥ ID�δ⊥ +
ln Pr[L2 ≤ δ]

ln(δ/r)
− ln Pr[L2

⊥ ≤ δ⊥]

ln(δ/r)
.

Fixing δ and δ⊥, and letting r → 0, the inequality has the limit ID�δ⊥ ≤ ID�δ.
Next, letting δ → 0, we observe that δ⊥ → 0, ID�δ → ID�∗ and ID�δ⊥ → ID�∗⊥,
and thus ID�∗⊥ ≤ ID�∗, which in turn implies that ID∗F⊥ ≤ ID∗F as required.

4 Conclusion

Theorem 4 has important implications for the theory and practice of databases,
machine learning, data mining, and other areas in which similarity information
plays a role. Under a reasonable assumption of the continuity of the local data
distribution, random projection in Euclidean vector spaces cannot be relied upon
to significantly improve the discriminability of a distance measure as the number
of data samples tends to infinity, nor can it be counted upon to greatly alleviate
the asymptotic effects of the curse of dimensionality.



12 M. E. Houle and K. Kawarabayashi

To see this, let us assume that we have a reference point Q within the domain
of a global data distribution, whose distance distribution has a local intrinsic
dimensionality of ID∗F . For a random projection to a subspace of dimension
t� ID∗F , the bounds of Theorem 4 become almost tight, showing that the local
ID of the distribution is essentially unchanged after projection. As increasingly
larger data samples are drawn from the distribution, the k-nearest neighbor
distance rk tends to 0, and thus the discriminability of the distance measure
at rk tends to ID∗F . Thus, under this scenario, as the data set size scales, the
discriminability of the distance measure over fixed-cardinality neighborhoods is
less and less affected by random projection.

On the other hand, when the projection dimension t is of the same order as
ID∗F (or of lower order), Theorem 4 implies that the local ID of the projected
distribution is no smaller than t, and no greater than ID∗F . However, the informa-
tion loss associated with projection to dimensionalities below that of the intrinsic
dimension would make any improvements in discriminability a moot point, as
the distance distribution would no longer be well-preserved in the vicinity of Q.

These implications together are of particular importance when randomly
projecting data drawn from a mixture of distributions, where the local intrinsic
dimensionality can vary greatly from location to location. Theorem 4 indicates
that the target dimension for projection should be chosen to be substantially larger
than the LID estimate at locations of particular interest or importance. Using
existing estimators of LID [3, 17], appropriate target dimensions for dimensional
reduction can be determined locally, without the need to construct an explicit
embedding of the data, or an explicit representation of the projective subspace.

These conclusions should not be taken to mean that random projection is
never capable of reducing the number of latent variables of a user-supplied data
set, or improving the discriminability of distances within the set. Theorem 4
addresses only the asymptotic effect of random projection on the LID of con-
tinuous Euclidean distance distributions, as the number of data instance rises.
In applications where the number of data instances can scale into the billions
or more, it is possible that these asymptotic effects could become more and
more evident. However, any attempt to empirically verify the predictions of
Theorem 4 would face significant obstacles, due to the limits in precision and
stability exhibited by all existing estimators of ID (not just LID) [3, 17], and
due to the difficulty in determining an appropriate locality size — if too large,
locality is violated; if too small, there are too few samples for the estimators
to converge. For this reason, the development of more effective ID estimation
methods for small local data samples is an important topic for future research.
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