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Abstract. The dimension of the space within which the data lives is a
major driver for the performance of many processing operations. How-
ever, global dimensionality cannot be blindly trusted as the data may
lie on structures of lower local dimensionality within the ambient space.
Here, we address the problem of estimating the local dimensionality of
the data space or to provide a consistent proxy for it.

The review of existing local dimensionality estimators shows the vari-
ous types of geometric information they are based on. We propose the
exploration of an alternative route using proximity constraints mapped
into the structure of a spanner graph whose properties reflect the local
geometry. We propose to adapt PageRank-like information propagation
algorithms to infer the structural intrinsic dimensionality directly from
the neighborhood structure of data points, taken as vertices. Further,
the presence of the spanner over our dataset enables global operations to
strengthen the coherence of our estimates and support similarity search.

Keywords: local intrinsic dimension· kissing number· geometric graph
spanner

1 Introduction

The dimension of the space containing the data generally refers to the geomet-
ric dimension corresponding to the number of linearly independent vectors the
space can accommodate. Global data dimension is not a proper characteristic of
the data. If the data is uniformly distributed within its ambient space, there is
no structural pattern to exploit to construct index structures. The assumption is
therefore that the global data dimension may simply represent the dimension of
an ambient space within which the data lies over finer structures as a subspace
of lower dimension. It is further assumed that the dimension of this subspace
may vary locally, therefore defining the notion of local dimensionality. The in-
trinsic nature of this dimensionality attaches it to the data rather than to its
representation and therefore makes it more of an invariant of that data.
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In this paper we investigate the nature of local dimensionality along with the
proposed models for its estimation (section 2). We then uncover the issues related
to its estimation in a practical setup. In particular, we address the issue of the
stability of the estimate in relation to the various parameters (sections 3 and 4).

The main contribution of this paper is to make proposals to break the para-
dox that local dimensionality is a local notion but the statistical nature of its
estimation requires to extend its support beyond mere locality. We present ex-
perimental measures that support our proposals.

2 The fundamental information behind local
dimensionality

We define the local dimensionality at point x ∈ RM as being a local indication
of dim(x), the latent dimension at point x of a continuous information density
distribution f immersed into the ambient space RM (f : RM 7→ R+ ;

∫
R f = 1).

That is the lowest dimension of the subspace around x within which f could be
embedded with no loss (isometrically).

f is thus a probability density function installed over the ambient space RM

from which we can sample discrete locations (the data). Call X a set of N points
X = {xi}[[N ]] ⊂ RM that is taken as a sample from the density distribution f . A
metric (e.g. Euclidean distance) is used to define the neighborhood of every xi.
Then, the goal of discrete local dimensionality estimation is to infer the value of
dim(xi) at every xi from the locations of points in the rest of X. In effect, the
function dim(.) can take any positive scalar value (dim(x) ∈ R+), i.e.”discrete”
refers to the estimation being based on discrete point locations.

2.1 Motivation for an estimation

Formally, the Nearest Neighbor Indexing (NNI) theorem [21] and subsequent
works state that for a workload of vanishing variance in high dimensions, the
performance of the class of convex indexes will approach that of sequential search
(i.e. O(N)). This is clearly supported in practice when working with data of
dimensions approaching 20.

Underlying the proof of the NNI theorem is the idea that the indexing cov-
ers the dataset X with potentially overlapping convex tiles. As the dimension
increases, the vanishing variance of the distribution (D) of distances makes the
width of the indexing tiles of the same order than the distance to the near-
est neighbor (the best answer to the query). As a result, all tiles need to be
fetched during any search process. In this situation, mostly all N points of X
are explored as candidates for the result of any search.

The property of vanishing variance stating that

∃α ∈ R+
\{0} s.t. lim

M→∞
Var

(
Dα
M

E[Dα
M ]

)
= 0
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is closely related to the so-called concentration of distances arising due to the
Lipschitz structure of Minkowski distances (summing iid coordinates) and the
Chebyshev inequality [3]. In other words, no convex indexing can provide ex-
clusion, due to the concentration of distances. This makes this result rather
universal in Data Analysis and motivates the quest for discrete local dimen-
sionality estimation. In essence, by turning the argument upside down, we seek
an estimate that correlates with the factor (called “dimensionality”, dim(x))
that influences the performance of any data nearest neighborhood indexing (and
analysis).

Note further that most of the related literature focuses on estimating the
dimensionality but a proper use of this characterization is yet to be proposed.
This work is a step towards constructing a context where the analysis provides
actionable tools to make effective similarity search in high dimensional spaces.

2.2 Expansion-based estimation

The class of expansion-based estimation techniques relies on the fact that the
increase of volume of a M -dimensional hypersphere VM is essentially related to
the increase of its radius r by an exponential relationship.

VM (r) =
2π

M
2

MΓ (M2 )
rM ⇒ ∂VM

∂r
=

2π
M
2

Γ (M2 )
rM−1

This is exploited in the definition of the Expansion Dimension (ED) [18] and its
generalization GED [12]. The strategy is to estimate a proxy for the volume of
the hypersphere of radius r centered at xi by counting the number n of data
points in a r-range query from xi. Hence, the dimension is estimated by a log of
the relative increase of this number (from n1 to n2) versus the increase in radius

(from r1 to r2): GED(xi) =
log

n2
n1

log
r2
r1

.

The above assumes (at least locally) a uniform distribution of data around
xi. It is further refined by considering (instead of the volume of the hypersphere)
the cumulative function F (r) of a distance distribution (whose 0 would be at -
every- xi). This allows to model a variable density within the space and to define
the lID [13, 14] that matches the GED for a uniform distribution.

2.3 Concentration of correlates

Another route for exploring the local geometry of the space is to look at angles.
Fixing one direction uk from xi (thru xk say), one can study the distribution
of the angles made between this direction and vectors uj whose extremity xj
other than xi is sampled over a hypersphere centered at xi. Such an estimation
amounts to compute the surface of spherical caps defined by the cones generated
by uk and angle θ ∝ ∠(uk,uj). This distribution of correlates (cos(θ) = 〈uk,uj〉)
is further known to concentrate with increasing dimensionality [5, 6, 9]:

P(θ) =
Γ (M2 )

Γ ( 1
2 )Γ (M−12 )

sinM−2(θ) and Var(cos(θ)) =
1

M
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The latter second order information is then used to estimate the local dimen-
sionality by local samples of angles [22].

2.4 Sphere packing

Another possible approach is to also use the notion of sphere packing [6] but
in relation to the kissing number. Here, the observed estimate is the number of
non-intersecting hyperspheres of diameter r able to be tangent to (to “kiss”)
a hypersphere of radius r centered at xi. This is known as the kissing number
Kiss(M) whose exact values are known only for a select number of dimension
values M ∈ {1, 2, 3, 4, 8, 24}. For other values, upper and lower bounds which
illustrate the dynamic of the kissing number with respect to the dimension have
been proposed [16]:

(1 +O(1))

√
3π

8
log

(
3

2
√

2

)
M

3
2

(
2√
3

)M
≤ Kiss(M) ≤ (1 +O(1))

√
π

8
M

3
2 2

M
2

The regular dependence of these bounds on dimension makes the kissing number
another appropriate entry door to the estimation of the local dimensionality.

It can be noted that this information also relates to the above angle-based
estimation in the sense that the kissing number counts the maximum number
of non-intersecting spherical caps with total angle π

3 (generative angle π
6 ) one

can segment the central hypersphere surface with. It is a particular instance of
so-called “spherical codes” [4, 16] with θ = π

3 . Equivalently, the kissing number
counts the number of points a given point can be nearest neighbor of (so-called
reverse nearest neighbor). For example, a point of a 2D plane can only be the
nearest neighbor of Kiss(2)=6 points (arranged as a hexagon).

2.5 Discussion

The above three approaches are different in their computation but rely on es-
sentially the same information.

Expansion-based estimations explicitly use the shape of the density distribu-
tion along the distance axis. That is, from the central point xi where the local
dimensionality is to be estimated the hyperspherical shell of radius r around
that point is integrated into the point of coordinate r on the distance axis. It
is the growth rate of this value that is explicitly modeled by GED and lID. In
the discrete version [1, 2], the lID is a measure of the density of data within a
thick spherical shell (from the 1-NN to the k-NN of xi). The transition from the
continuous model to the discrete estimation still imposes an assumption of local
uniformity in the distribution of the k nearest neighbors.

The estimation of the ABID [22] is based on estimating the concentration of
the cosine similarities between points on a hypersphere centered at xi. Using fixed
length vectors, the cosine similarities are known to correlate with squared dis-
tances (e.g. this is the basis for the MIPS problem [10]) [4]: 〈uk,uj〉 ∝ d(xk, xj)

2

In practice, the k nearest neighbors from xi are used so that the ABID is also a



Structural Intrinsic Dimensionality 5

reflection of the density of data within a thick spherical shell (from the 1-NN to
the k-NN of xi). The advantage of this estimation is that angles involve triplets
of points and create a combinatoric volume of estimates, thus reducing the span
of the neighborhood (value of k) required in practice to obtain a robust estimate.

Finally, using the kissing number to estimate the local dimensionality imposes
complementary constraints: at fixed radius r from xi (first constraint) the kissing
number counts how many points can be organized so as to be at least r-distant
from each other (second constraint). The first constraint may similarly be relaxed
by exploring values of r along the distance axis. The second constraint may be
imposed by selecting neighbors dispersed around xi. This is handled via the
generation of spanner graphs such as the reverse neighbor graph, the half-space
proximal graph (HSP) [7] or the Yao and θ-graphs [20]. In earlier works [15, 8],
we explored the correlation between indicators of some of these graphs with local
dimensionality to partition the dataset in view of improving its indexability.

3 Information propagation on neighbor graphs

In their original presentations, the above measures essentially treat all points
xi individually and sequentially. They then operate some statistical analysis
(e.g. mean or variance) on the distribution of the local dimensionality values
throughout the dataset.

Considering the points independently creates the tension between the desire
to compute a robust estimation over a large number of neighbors (large k in k-
NN) and the intrinsic wish to stay local (small ε in ε-NN). The kissing number
instructs us that for dimensions as limited as 20 the coverage of the hypersphere
requires O(104) neighbors already, which is beyond the density of any classical
dataset1. One can therefore question the validity of the empirical estimates made
using k = O(102) neighbors. This is partly discussed in [22], for example.

In addition, the local dimensionality may vary from a point to another in
X. Hence, computing global a posteriori statistics may not be so relevant for all
datasets (e.g. a Saturn-shaped dataset). This can be related to the Yule-Simpson
effect [11], which induces potentially contradictory interpretations, depending of
the scale at which the data is studied2.

In turn, a true local dimensionality estimate would enable operations like
dimensionality-based clustering, and define indexability [15].

Here, we make steps in the direction pointed by the above remarks: using the
global structural information provided by the full dataset X for estimating the
local dimensionality at every xi ∈ X. We relax the implicit above assumption of
a constant local dimensionality by assuming that the local dimensionality bears

1 We argue that estimating the O(M) linearly independent vectors reflecting the geo-
metric dimension (e.g. using rank-based methods such as local PCA) would not be
reliable in that case due to quasi-orthogonality [17] and the issue of local neighbor-
hood selection.

2 This further relates the question of discrete local dimension estimation to local scale
estimation, an important topic, addressed in [2], left for further investigation.
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some smoothness of the form: d(xi, xj) < r ⇒ |dim(xi)−dim(xj)| < α for small
values of r and α.

3.1 Structural regression

Following the above discussion we propose to enforce that the dimensionality at
xi is the weighted average of the dimensionality of its neighbors xj :

dim(xi) =
1

Zi

∑
xj∈N (xi)

wij dim(xj) (1)

for some neighborhood N (xi) and some influence weighting wij with proper
normalization Zi =

∑
j wij (note that xi 6∈ N (xi) and wii = 0). This smoothness

condition alone makes the dimensionality estimates prone to translation, as the
above stays valid if dim′(xi) = dim(xi) + K with any constant K. Hence, we
apply this strategy starting from an estimate ε of the dimensionality (e.g. lID or
ABID).

Given ε = [εi]
T as estimate for local dimensionality d = [di]

T, we resolve the
classical regression:

d∗ = min
d∈RN

L(d, ε) where L(d, ε) =
1

2
‖d− ε‖22 +

λ

2
(di −

∑
xj∈N (xi)

dj)
2

with λ > 0 controlling the smoothness when maintaining the volume
∑
i di

constant. The above is a classical convex minimization solved iteratively using:

d
(t+1)
i ← d

(t)
i − η

(d
(t)
i − εi) + λ(d

(t)
i −

∑
xj∈N (xi)

wijd
(t)
j )

 (2)

for learning rate 0 < η < 1. It is easy to see that this guarantees Var[d∗] ≤ Var[ε].

3.2 Experiments

We wish to validate empirically our analysis on the regularity of local dimen-
sionality estimates. We use the lID [13] and its MLE estimate [2], and the HSP
degree [15] over uniform datasets of known dimensionality to calibrate our study.

We generate datasets of various dimensionalities (M ∈ {3, 6, 10, 15, 20, 30, 50})
and various densities (N ∈ {10000, 20000, 30000, 40000, 50000, 100000, 150000})
to study the influence of dimension with respect to data density.

The datasets are composed of N samples of a distribution (Uniform or Gaus-
sian) restricted to a M -dimensional hypersphere of radius 1. Spherical datasets
are chosen to eliminate “corner” effects.

Figure 1(top) shows the estimates provided by the HSP built over an hyper-
sphere filled with uniform (left) and Gaussian (right) sampling, using its degree
as a function of the data density and for the dimensionalities listed above. One
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Fig. 1. Variation of dimensionality estimates versus parameters (N or kmax) for [left:
spherical data] [right: gaussian data] [up: HSP degree] [down: lID with N = 50′000]

clearly sees that although only correlated with the true dimensionality, the esti-
mates stabilize with an increase of the density but that the variance augments
with density.

Turning to the lID MLE estimate, we use the same datasets with fixing a
high density with N = 50′000 and varying the size of the neighborhood over
which the estimate is computed: kmax ∈ {1000, 3000, 5000, 10000}. Clearly, the
estimates get corrupted using a too large kmax. Further, as dimensionality in-
creases this phenomenon is more drastic (the variance here is too large to be
properly displayed).

The above clearly illustrates the contradiction in extending the support of
estimation of a local estimator. It shows that even though the estimates may
be considered as overall reliable (e.g. when averaged), the sensitivity to their
parameters and location of estimation is so that they cannot be blindly applied
without some knowledge of an appropriate scale and the presence of a reasonable
local data density.

The main issue lies in the variance of these estimates, as we seek a factor that
correlates with what could be referred to as local dimensionality. We therefore
look at the behavior of these measures over datasets of varying dimensionality



8 Marchand-Maillet, Pedreira and Chávez

to demonstrate the capability of our smoothing (Eq 1) to reduce the variance of
the estimates. We generate a dataset with 3 non-overlapping spherical uniform
clusters containing 20’000, 15’000 and 15’000 points respectively and of dimen-
sionality 20, 10 and 5 respectively. We initially estimate the degree of the HSP
and smooth it using our iterative convolution (Eq 2) where we fix λ = 5 and
η = 0.1 everywhere.

Fig. 2. Estimates before and after iterative convolution. The initial values are [left:
HSP degree], [right: lID using k=1000]. Both diffusions happen over the HSP

The result is reported in figure 2(left). We first clearly see that the estimate
is correct with respect to our calibration in fig 1. The three clusters are clearly
identified. However, the estimate vary significantly within clusters. As result of
the regression, dimension estimates are corrected (from blue to red dots) and
the variance diminish appropriately. Here, inspired by the gravitational physical
model, we use wij = 1

d2(xi,xj)
as influence weight.

We use the same dataset to perform an estimate with the lID (fixing kmax =
1000) (fig 2(right)). The regression clearly alleviates the problem of high vari-
ance in the estimates. However, due to the initial distribution, the estimates
remain rather spread, indicating a need for exploring stronger constraints in the
regression or using a stronger value for λ.

Table 1 gives the variation of mean and standard deviation (between brack-
ets) of the estimates in both cases and per cluster. Note that the result of the
convolution is not the mere mean and variance of the original, showing that the
weighting structure does play a role.

4 Structural intrinsic dimensionality

We push the idea of information propagation over a neighborhood structure a
step further. The geometry described in section 2.4 suggests that dimensionality
may be captured by the connectivity structure of the neighborhood graph itself.
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Cluster 1 Cluster 2 Cluster 3

HSP initial 28.02 (10.97) 13.89 (3.37) 7.54 (1.26)

HSP smoothed 26.08 (6.71) 15.29 (2.06) 8.71 (0.64)

lID initial 22.70 (6.51) 10.95 (2.83) 5.23 (1.06)

lID smoothed 22.74 (3.65) 10.93 (1.95) 5.21 (0.83)

Table 1. Mean and standard deviations for HSP degree and lID before and after
iterative convolution (λ = 5 and η = 0.1)

We already demonstrated that the degree of the HSP whose construction re-
lates to the kissing number correlates with dimensionality. It is known (notably
from the development of the PageRank algorithm) that information propagation
over directed graphs can provide essential information about the underlying con-
nectivity structure. We therefore hypothesize that the local dimensionality may
be inferred via information diffusion, provided the graph encodes this informa-
tion.

Given a directed graph G = (X,E) with edge set E defined from geometric
constraints, i.e. (xi, xj) ∈ E iff xj ∈ N (xi), we define information propagation
of value d(x) as the convergence of the (directed) iterative process:

d
(t+1)
i ←

∑
xj s.t. xi∈N (xj)

wjid
(t)
j (3)

Classically, the diffusion is done so as to preserve the value
∑
i d(xi) constant.

The directed setup thus imposes
∑
j wij = 1 ∀i ∈ [[N ]], making matrix

W = [wij ]ij∈[[N ]] a row-stochastic matrix (wij = 0 if (xi, xj) 6∈ E). It is known
that under proper conditions, this process converges to the principal eigenvector
(with eigenvalue 1) of W , the weighted adjacency matrix of G. In PageRank-like
diffusion algorithms, edge weights wij are tuned so as to distribute the value at
node xi to forward neighbors xj based on the degree (e.g. wij = 1

deg+(xi)
).

Adapting to our geometrical context we read deg+(xi) =
∑
xj∈N (xi)

1. That

is, every outgoing edge from xi counts 1, so that wij = 1∑
xk∈N(xi)

1 . We transform

this to influence by inserting an inverse dependence φ(.) to distance as edge
weight, while preserving the row-stochasticity constraint:

wij =
φ(d(xi, xj))∑

xk∈N (xi)
φ(d(xi, xk))

where, for example φ(x) =
1

x
(4)

Using an inverse dependence as base edge weight (Eq 4) therefore induces a
softmax-like filter on edges, thus favoring the shortest edge emanating from ev-
ery xi. Combining this with our diffusion strategy (Eq 3), every vertex xi receives
mostly influence from the other vertices xj of which it is the closest neighbor.
This corresponds exactly to the definition of the kissing number at xi. We there-
fore expect diffusion over such graph structures to exhibit an information that
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correlates with local dimensionality and that we can refer to as structural in-
trinsic dimensionality.

The relationship with eigencentrality in graphs is also clear as it corresponds
to the case where φ(x) = 1. This nicely connects with and continues our earlier
proposals [15, 8], where we proposed graph centrality measures as indicators that
correlate with local dimensionality. In this context, the degree of the HSP is seen
as its degree centrality indicator, itself an approximation of the eigencentrality.

4.1 Experiments

We now propose results for our structural intrinsic dimensionality estimation
using again the cluster dataset presented above. Our initial experiment confirms

Cluster 1 Cluster 2 Cluster 3

Initial 3.14 (3.60) 1.61 (1.48) 0.86 (0.58)

Smoothed 3.44 (1.54) 1.40 (0.75) 0.65 (0.32)

Fig. 3. Dimensionality indicator from information propagation over the HSP (φ(x) =
1√
x

). Estimates before and after iterative convolution

that a careful design of the edge weighting scheme is important. We found that
using φ(x) = 1√

x
in Eq 4 produces interesting results. As before, we smoothed

these results via iterative convolution. The results are presented in figure 3.
Of course, the value of the estimate does not match the dimensionality as

understood as space dimension. However, information propagation does pro-
duce a proper indicator of this dimensionality. More investigation is required
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to understand the most favorable structure of underlying spanner (HSP, k-NN,
reverse-k-NN, ...) to use for propagation and the best weighting scheme. It can
even be envisaged to join both, starting from the complete graph and decimating
it with respect to the defined edge weight (i.e. removing edges with negligible
transfer in order to reduce the computational cost).

Finally, it seems natural to target the integration of the iterative convolution
process (Eq 2) with the propagation (Eq 3). We therefore believe that this graph-
based strategy for the estimation of the structural intrinsic dimensionality opens
many interesting questions.

5 Conclusion

Local dimensionality is a major driver for the performance of data processing
techniques. Its effects are deeply rooted into statistics, as demonstrated by the
concentration of distances that is one aspect of the curse of dimensionality. Ob-
taining indicators for local dimensionality in the discrete space is therefore of
interest and most existing local dimensionality indicators are based on the esti-
mation of the variation of local density.

Here, we consider any indicator that show a monotonic relationship with
local dimensionality. We propose to exploit the definition of the kissing number
to obtain such an indicator. Using a graph structure over the dataset, we show
that information propagation can not only help strengthening classical indicators
but also being used as an estimator itself. This work therefore gives a formal
grounding for our earlier proposals [15, 8].

The results open the question of the underlying graph structure that would
be best suited for such an exploration. We suggest that this question is equivalent
to defining a proper edge weight, capturing the geometry of the dataset in the
graph structure. As this weighting naturally makes use of the underlying metric,
this clearly relates to the construction of appropriate geometric t-spanners that
will be one direction we wish to explore. One can note that graph-based com-
putations also provide a computational solution to the problem of combining
local and global structures. Computation can further be distributed using the
tight equivalence between information propagation algorithms and random walk
processes.

Finally, determining local dimensionality does not directly provide a solution
to counter its adverse effects. We have proposed to use it to partition the dataset
based on its indexability [15]. Following that route, we believe that the graphs
arising from the estimation of the structural intrinsic dimensionality will be
useful for constructing efficient indexing strategies in the line of recent graph-
based indexing techniques using navigable structures [19].

Another option for using local dimensionality estimates in an operational
setting may be their use to drive local embedding for adapting the indexing
locally into a lower dimensional context.
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