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Abstract. Local intrinsic dimensionality (LID) has many important
applications in the field of machine learning (ML) and data mining
(DM). Existing LID models and estimators have mostly been applied
to data points in Euclidean spaces, enabling LID-aware ML/DM algo-
rithms for tabular data. To the best of our knowledge, prior research
works have not considered LID for designing or evaluating graph-based
ML/DM algorithms. In this paper, we discuss potential applications of
LID to graph-structured data considering graph embeddings and graph
distances. Then, we propose NC-LID – a LID-related measure for quanti-
fying the discriminatory power of the shortest-path distance with respect
to natural communities of nodes as their intrinsic neighborhoods. It is
shown how NC-LID can be utilized to design LID-elastic graph embed-
ding algorithms based on random walks by proposing two LID-elastic
variants of Node2Vec. Our experimental evaluation on real-world graphs
demonstrates that NC-LID can point to weak parts of Node2Vec embed-
dings that can be improved by the proposed LID-elastic extensions.

Keywords: Intrinsic dimensionality · Graph embeddings · Graph dis-
tances · Natural communities · LID-elastic Node2Vec

1 Introduction

The intrinsic dimensionality (ID) of a dataset is the minimal number of features
that are needed to form a good lower-dimensional representation of the dataset
without a large information loss. The estimation of ID is highly relevant for
various machine learning and data mining tasks, especially when dealing with
high-dimensional data. Namely, lower-dimensional data representations can be
exploited to train machine learning models in order to improve their generaliz-
ability by alleviating negative effects of high dimensionality. Due to a smaller
number of features, such models are more comprehensible and their training,
tuning and validation is more time efficient.
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The notion of the local intrinsic dimensionality (LID) has been developed in
recent years motivated by the fact that the ID may vary across a dataset. The
main idea of LID is to focus the estimation of ID to a data space surrounding a
data point. In a seminal paper, Houle [7] defined the LID considering the distri-
bution of distances to a reference data point. Additionally, Houle showed that
for continuous distance distributions with differentiable cumulative density func-
tions the LID and the indiscriminability of the corresponding distance function
are actually equivalent. Let x be a reference data point and let F denote the
cumulative distribution function of distances to x. It can be said that the under-
lying distance function is discriminative at a given distance r if F (r) has a small
increase for a small increase in r. Thus, the indiscriminability of the distance
function at r w.r.t x, denoted by ID(r), can be quantified as the limit of the
ratio of (a) the proportional rate of increase of F (r), and (b) the proportional
rate of increase in r. Then, the LID of x is given as limr→0 ID(r). For practical
applications, the LID of x can be estimated considering the distances of x to its
k nearest data points [1, 2]. Recent research works showed that the LID can be
exploited for density-based clustering [9], outlier detection [9, 10], training deep
neural network classifiers on datasets with noisy labels [13], detection of adver-
sarial data points when training deep neural networks [12], subspace clustering
and estimating the local relevance of features [3] and similarity search [4, 8].

The applications of machine learning and data mining algorithms designed
for tabular datasets to graphs are enabled by various graph embedding algo-
rithms [5]. Here we consider graph embedding algorithms translating graph nodes
into n-dimensional real-valued vectors with the goal of preserving graph-based
distances in the embedding space. Besides applications in node classification,
node clustering and link prediction tasks, graph embeddings may be also uti-
lized for similarity search applications. Namely, similarity search when performed
directly on large-scale graphs may pose several difficulties due to the small-world
phenomenon [16], i.e. for a given node (similarity search query) the number of
nodes at a given shortest-path distance (potential similarity search hits) grows
at a very fast rate with the shortest path distance.

In this paper we discuss potential applications of LID to graphs (Section 2).
To the best of our knowledge, this is the first work considering LID for designing
and evaluating ML/DM algorithms operating on graph-structured data. As the
main contributions, we propose a LID-related measure called NC-LID to quantify
the discriminability of the shortest-path distance locally per node with respect
to their natural communities as intrinsic subgraph boundaries (Section 3) and
two extensions of the Node2Vec graph embedding algorithm [6] that personalize
and adjust Node2Vec parameters according to NC-LID values (Section 4). In the
experimental evaluation presented in Section 5, it is demonstrated that NC-LID
can indicate weak parts of Node2Vec embeddings prior to their construction
and that our LID-elastic Node2Vec extensions provide better embeddings w.r.t.
reconstruction errors. In the last section we discuss possible directions for future
research.
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2 LID and Graphs

Existing LID models and corresponding estimators have been designed for tabu-
lar datasets with real-valued features and smooth distance functions. There are
two ways in which they can be applied to graphs: (a) by transforming graphs
into tabular data representations using graph embedding algorithms, and (b) by
using graph-based distances instead of distances of vectors in Euclidean spaces.
To the best of our knowledge, we are not aware of any previous research study
investigating the LID of graph embeddings or applying LID estimators to graph-
based distances.

The first approach enables the LID-based evaluation of graph embeddings
and their analysis in the context of distance-based machine learning and data
mining algorithms. For example, Amsaleg et al. [1] proposed the maximum-
likelihood LID estimator (MLE-LID). By computing MLE-LID for each node
in a graph on embeddings produced by different graph embedding algorithms
we can study which of the embeddings is the most effective for distance-based
machine learning and data mining algorithms (under the assumption that the
embeddings preserve the structure of the graph to a similar extent). Additionally,
obtained MLE-LID values can indicate whether we can benefit from LID-aware
data mining and machine learning algorithms for a concrete embedding.

LID estimates for graph nodes obtained by applying LID estimators on graph
embeddings are relative to the selected graph embedding dimension that is ex-
plicitly required by graph embedding algorithms. Additionally, the usefulness of
LID estimates depends on the ability of the selected graph embedding algorithm
to preserve the structure of the input graph.

The MLE-LID estimator mentioned above (or any other LID estimator, e.g.
the estimator also proposed by Amsaleg et al. [2] that estimates LID within
tight localities) can be applied “directly” on graphs by taking shortest path
distances instead of distances in Euclidean spaces (in the most general case since
graph embedding algorithms try to preserve shortest path distances in embedded
spaces). However, LID estimates based on shortest path distances will suffer from
negative effects of the small-world property, i.e. for a randomly selected node n
there will be an extremely large fraction of nodes at the same and relatively
small shortest-path distance from n. The hubness property of large-scale real-
world graphs (i.e., the existence of nodes with an extremely high degree that are
called hubs) will also have a big impact on such LID estimates. For example, LID
for hubs will be estimated as 0 by the MLE-LID estimator due to a large number
of nearest neighbors at the shortest-path distance 1. Another problem with this
approach is the shortest-path distance itself. The notion of LID is based on the
assumption that the radius of a ball around a data point can be increased by a
small value that tends to 0. However, the shortest-path distance does not have
an increase that can go to 0 (the minimal increase is 1) in contrast to distances
in Euclidean space.
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3 NC-LID: LID-related Measure for Graph Nodes based
on Natural Communities

Following the discussion from the previous section, we consider a somewhat
different conceptual approach to designing LID-related measures for nodes in a
graph. The main idea is to substitute a ball around a data point with a subgraph
around a node in order to estimate the discriminatory power of a graph-based
distance of interest. Here we observe the most basic case which is a fixed subgraph
that can be considered as the intrinsic locality of the node.

Let n denote a node in a graph G = (V,E) and let S be a subgraph contain-
ing n. The graph-based distance of interest can be the shortest-path distance,
but also any other node similarity function, including hybrid node similarity
measures for attributed graphs. Assuming that S is a natural (intrinsic) locality
of n, d can be considered as a perfectly discriminative distance measure if it
clearly separates nodes in S from the rest of the nodes in G.

To measure the degree of discriminatory power of d considering S as the
intrinsic locality of n we define a general limiting form of the local intrinsic
discriminability of d as

GB-LID(n) = − ln

(
|S|

T (n, S)

)
, (1)

where |S| is the number of nodes in S. T (n, S) is the number of nodes whose
distance from n is smaller than or equal to r, where r is the maximal distance
between n and any node from S:

T (n, S) =

∣∣∣∣{y ∈ V : d(n, y) ≤ max
z∈S

d(n, z)

}∣∣∣∣ . (2)

Similarly to standard LID for tabular data, GB-LID assesses the local neigh-
borhood size of n at two ranges: the number of nodes in a neighborhood of
interest (S) and the total number of nodes that are within relevant distances
from n considering distances from n to nodes in S. The more extreme the ratio
between these two, the higher the intrinsic dimensionality (local complexity) of
n. Unlike standard LID, GB-LID depends on the complexity of a fixed subgraph
around the node rather than some measure reflecting the dynamics of expanding
subgraphs (this will be part of our future work). Compared to other measures
capturing the local complexity of a node (e.g., degree centrality and clustering
coefficient), GB-LID is not restricted to ego-networks of nodes or regularly ex-
panding subgraphs capturing all nodes within the given distance (e.g., LID-based
intrinsic degree proposed by von Ritter et al. [15]).

GB-LID is a class of LID-related scores effectively parameterized by ⟨Sn, d⟩,
where Sn is the subgraph denoting the intrinsic local neighborhood of node n
and d is an underlying distance measure. From GB-LID we derive one concrete
measure called NC-LID (NC is the abbreviation for “Natural Community”). In
NC-LID we fix Sn to the natural (local) community of n determined by the
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fitness-based algorithm for recovering natural communities [11] and d is the
shortest path distance.

A community in a graph is a highly cohesive subgraph. This means that the
number of links within the community (so-called intra-community links) is sig-
nificantly higher than the number of links connecting nodes from the community
to nodes outside the community (so-called inter-community links). The natural
or local community of node n is a community recovered from n. When computing
NC-LID we use the fitness-based algorithm for identifying natural communities
proposed by Lancichinetti et al. [11]. Starting from n, this algorithm recovers
the natural community C of n by maximizing the community fitness function
that is defined as:

fC =
kin(C)

(kin(C) + kout(C))α
, (3)

where kin(C) is the total intra-degree of nodes in C, kout(C) is the total inter-
degree of nodes in C, and α is a real-valued parameter controlling the size of
C (larger α implies smaller C). The intra-degree and inter-degree of a node s
are the number of intra-community and inter-community links incident to s,
respectively. The most natural choice for α is α = 1, which corresponds to the
Raddichi notion of weak communities [14].

NC-LID(n) is equal to 0 if all nodes from the natural community of n are at
shorter shortest-path distances to n than nodes outside its natural community.
Higher values of NC-LID(n) imply that it is harder to distinguish the natural
community of n from the rest of the graph using the shortest-path distance, i.e.
the natural community of n tends to be more “concave” and elongated in depth
with higher NC-LID(n) values. Nodes with such complex natural communities
may also be brokers having large values of node centrality metrics that connect
different parts of the graph by their long-range links (i.e, links whose removal
significantly increase the average shortest path distance).

4 LID-elastic Node2Vec Variants

Having an appropriate LID-based score for graph nodes such as NC-LID, it is
possible to design LID-aware or LID-elastic graph embedding algorithms. In this
work we propose two LID-elastic variants of Node2Vec [6].

Node2Vec is a random-walk based algorithm for generating graph embed-
dings. The main idea of random-walk based graph embedding algorithms is to
sample a certain number of random walks starting from each node in a graph.
Sampled random walks are then treated as ordinary sentences over the alphabet
encompassing node identifiers. This means that the problem of generating graph
embeddings is reduced to the problem of generating text embeddings. Node2Vec
relies on Word2Vec to produce node embedding vectors from random-walk sen-
tences.

Node2Vec employs a second order random walk scheme with two parameters
p and q which guide the walk. Let us assume that a random walk just tran-
sitioned from node t to node v. The parameter p (return parameter) controls
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the probability of intermediately returning back to t. The parameter q (in-out
parameter) controls to what extent random walk resembles BFS or DFS graph
exploration strategies. For q > 1, the random walk is more biased to nodes close
to t (BFS-like graph exploration). If q < 1 then the random walk is more inclined
to visit nodes that are further away from t (DFS-like graph exploration).

Our Node2Vec LID-elastic extensions are based on the premise that high NC-
LID nodes have higher link reconstruction errors than low NC-LID nodes due to
more complex natural communities. More specifically, the quality of graph em-
beddings can be assessed by comparing original graphs to graphs reconstructed
from embeddings. Let G denote an arbitrary graph with L links and let E be
an embedding constructed from G using some graph embedding algorithm. The
graph reconstructed from E has the same number of links as G. The links in
the reconstructed graph are formed by joining the L closest node vector pairs
from E. Then, the following metrics quantifying the quality of E according to
the principle that nodes close in G should be also close in E can be computed
for each node n:

1. Link precision P (n) is the number of correctly reconstructed links incident
to n divided by the total number of links incident to n in the reconstructed
graph.

2. Link recall R(n) is the number of correctly reconstructed links incident to n
divided by the total number of links incident to n in the original graph.

3. Link F1 score F1(n) is a metric aggregating P (n) and R(n) into a single score
that is defined as their harmonic mean: F1(n) = 2·P (n)·R(n)/(P (n)+R(n)).

Higher values of P (n), R(n) and F1(n) imply lower link reconstruction errors
for n.

The sampling mechanism of Node2Vec is controlled by 4 parameters: the
number of random walks sampled per node, the length of each random walk,
p and q. The first two parameters are fixed for each node in a graph, while p
and q are fixed for each pair of nodes. Our Node2Vec LID-elastic extensions are
based on Node2Vec parameters personalized for nodes and pairs of nodes that
are adjusted according to their NC-LID values.

The first LID-elastic variant of Node2Vec, denoted by lid-n2v-rw, person-
alizes the number of random walks sampled per node and the length of random
walks according to the following rules:

1. The number of random walks sampled for n is equal to ⌊(1+NC-LID(n))·B⌋,
where B is the base number of random walks (by default B = 10).

2. The length of random walks sampled for n is equal to ⌊W/(1+NC-LID(n))⌋
(by default W = 80).

lid-n2v-rw samples a proportionally higher number of random walks for high
NC-LID nodes while keeping the computational budget (the total number of
random walk steps per node) approximately constant. The main idea is to in-
crease the frequency of high NC-LID nodes in sampled random walks in order
to better preserve their close neighborhood in formed embeddings. Additionally,
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the probability of the random walk leaving the natural community of the starting
node is lowered for high NC-LID nodes due to shorter random walks.

The second LID-elastic variant of Node2Vec, denoted by lid-n2v-rwpq, ex-
tends lid-n2v-rw by personalizing p and q parameters controlling biases when
sampling random walks. Let pb and qb denote the base values of p and q (by
default pb = qb = 1). The lid-n2v-rwpq variant incorporates the following ad-
justments of p and q for a pair of nodes x and y, where x is the node on which
the random walk currently resides and y is one of its neighbours:

1. If x is in the natural community of y then p(x, y) = pb, otherwise p(x, y) =
pb +NC-LID(y).

2. If y is in the natural community of x then q(x, y) = qb, otherwise q(x, y) =
qb +NC-LID(x)

The first rule controls the probability of returning back from x to y if the random
walk transitioned from y to x in the previous step. By increasing the base p value
if x is not in the natural community of y lid-n2v-rwpq lowers the probability
of making a transition between different natural communities. The increase is
equal to NC-LID(y) which implies that the backtrack step is penalized more if
y has a more complex natural community.

The second rule controls the probability of going to nodes that are more dis-
tant from the previously visited node in the random walk. The base q value is
increased for nodes not belonging to the natural community of x meaning that
again lid-n2v-rwpq penalizes transitioning between different natural commu-
nities. The increase in qb is equal to NC-LID(x) implying that lid-n2v-rwpq

biases the random walk to stay within more complex natural communities.

5 Experiments and Results

Our experimental evaluation of the NC-LID measure and LID-elastic Node2Vec
extensions is performed on datasets (graphs) listed in Table 1. The experimen-
tal corpus encompasses three small social networks (Karate club, Les miserables
and Florentine families), five paper citation networks (CORAML, CORA, CITE-
SEER, PUBMED and DBLP) and two co-purchasing networks of Amazon prod-
ucts (AE photo and AE computers) that are commonly used to evaluate graph
embedding methods. For each graph, Table 1 shows the number of nodes (N),
the number of links (L), the number of connected components (C), the fraction
of nodes in the largest connected component (F ), the average degree (d̄) and
the skewness of the degree distribution (S). It can be observed that the exper-
imental corpus encompasses both small and large sparse graphs (d̄ ≪ N − 1).
All graphs, except CITESEER, are either connected graphs (C = 1) or have a
giant connected component (F > 0.9). The degree distribution of large graphs
has a high positive skewness implying that those graphs contain so-called hubs
(nodes whose degree is significantly higher than the average degree).
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Table 1. Experimental datasets.

Graph N L C F d̄ S

Karate club 34 78 1 1.00 4.59 2.00
Les miserables 77 254 1 1.00 6.60 1.89
Florentine families 15 20 1 1.00 2.67 0.62
CORAML 2995 8158 61 0.94 5.45 12.28
CITESEER 4230 5337 515 0.40 2.52 8.44
AE photo 7650 119081 136 0.98 31.13 10.42
AE computers 13752 245861 314 0.97 35.76 17.34
PUBMED 19717 44324 1 1.00 4.50 5.21
CORA 19793 63421 364 0.95 6.41 7.87
DBLP 17716 52867 589 0.91 5.97 9.43

5.1 Natural Communities and NC-LID

Since natural communities are the base for the NC-LID measure, we first examine
their characteristics. Figure 1 shows the complementary cumulative distribution
(CCD) of the size of natural communities on a log-log plot. The size of a natural
community is the number of nodes it contains. It can be seen that CCDs for
large graphs have very long tails. This implies that a large majority of nodes
have relatively small natural communities (10 or less nodes), but there are also
nodes having exceptionally large natural communities (100 or more nodes). For
example, 76.56% of CORA nodes have natural communities with 4 or less nodes,
while the largest natural community in CORA contains 146 nodes.

The average NC-LID and the maximal NC-LID of nodes in examined graphs
are presented in Figure 2 sorted from the graph having the most compact nat-
ural communities to the graph with the most complex natural communities on
average. The social network of Florentine families has the lowest average NC-
LID equal to 0.48. This NC-LID level means that approximately 38% of nodes
within the shortest-path radius of the natural community of a randomly selected
node do not belong to its natural community. The largest average NC-LID for
examined graphs is 5.12 (AE computers). This NC-LID value corresponds to
situations in which approximately 0.6% of nodes within the shortest-path radius
of a natural community belong to the natural community. It should be empha-
sized that NC-LID positively correlates with the size of the natural community
(Spearman’s correlations higher than 0.3) for 5 graphs, for 3 graphs negatively
(correlations lower than -0.15), while for 2 graphs (PUBMED and AE Comput-
ers) significant correlations are absent.

5.2 Node2Vec Evaluation

Prior to evaluating LID-elastic Node2Vec modifications, we examine character-
istics of Node2Vec embeddings. Graph reconstruction metrics (mean link pre-
cision, recall and F1 scores, see Section 4) were computed for 125 Node2Vec
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Fig. 1. The complementary cumulative distribution of sizes of natural communities.
The solid line represents the 0.5 probability.

Fig. 2. The average and the maximal NC-LID for graphs from our experimental corpus.

embeddings per graph in order to find the best embedding in the following pa-
rameter space: p and q were varied to take values in {0.25, 0.5, 1, 2, 4}, and the
embedding dimension in {10, 25, 50, 100, 200}. The number of sampled random
walks per node and the length of random walk was set to their default values
(10 and 80, respectively) as suggested in [6]. The parameters for the best em-
beddings, selected according to the average F1 score, are shown in Table 2 (P
denotes the mean link precision and R the mean link recall). It can be seen that
for all graphs except CITESEER, Node2Vec preserves the structure of examined
graphs to a fairly good extent (F1 in the range from 0.39 to 0.96).

The basic assumption of LID-elastic Node2Vec modifications is that high
NC-LID nodes have higher graph reconstruction errors compared to low NC-
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Table 2. Characteristics of the best Node2Vec embeddings.

Graph Dim. p q P R F1

Karate club 100 0.25 4 0.7814 0.7762 0.7788
Les miserables 100 0.25 4 0.7889 0.8325 0.8101
Florentine families 100 0.25 4 0.9667 0.9611 0.9639
CORAML 25 0.5 0.25 0.6300 0.6682 0.6485
CITESEER 10 0.5 0.25 0.2284 0.2438 0.2359
AE photo 50 0.5 0.5 0.5076 0.4835 0.4953
AE computers 50 4 0.25 0.4856 0.4231 0.4522
PUBMED 50 4 0.25 0.3152 0.5245 0.3937
CORA 25 4 0.25 0.5803 0.5648 0.5724
DBLP 25 0.5 1 0.4431 0.3693 0.4029

LID nodes when applying the original Node2Vec to generate graph embeddings.
To check this assumption we first examine Spearman’s correlations between NC-
LID of nodes and their F1 scores in the best Node2Vec embeddings described in
Table 2. The obtained results are presented in Figure 3. It can be seen that for
all graphs except two small graphs (Karate club and Les miserables) there are
notable negative Spearman’s correlations between NC-LID and F1 ranging from
-0.2 to -0.4 (please recall that lower F1 scores imply higher graph reconstruction
errors).

Fig. 3. The Spearman correlation between NC-LID of nodes and their F1 scores in the
best Node2Vec embeddings.

Second, we divide nodes into two groups: H – nodes that have high NC-LID
values higher than the average NC-LID and L – nodes with low NC-LID values
lower than the average NC-LID. Then, we apply the Mann-Whitney U (MWU)
test to those two groups of nodes considering their F1 scores. The MWU test
checks the null hypothesis that scores in one group do not tend to be either
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higher or lower than scores in the other group. The results of conducted MWU
tests are summarized in Table 3. The table shows the average F1 score for H
and L (F1(H) and F1(L), respectively), the value of the MWU test statistic (U),
the p-value of U (p) and values of two probabilities of superiority:

– PS(H) – the probability that the F1 score of a randomly selected node from
H (denoted by h) is strictly higher than the F1 score of a randomly selected
node from L (denoted by l), and

– PS(L) – the probability that the F1 of l is strictly higher than the F1 of h.

We accept the null hypothesis of MWU (no statistically significant differences
between in F1 scores of H and L) if p > 0.01 (column “acc.” in Table 3). It
can be observed that the null hypothesis of MWU is accepted only for the three
smallest graphs from our experimental corpus. For large graphs we have that F1

scores of high NC-LID nodes tend to be significantly lower than F1 scores of low
NC-LID nodes (F1(H) < F1(L) and PS(H) ≪ PS(H)).

Table 3. Comparison of F1 scores of high NC-LID nodes (H) and low NC-LID nodes
(L) using the Mann-Whitney U test.

Graph F1(H) F1(L) U p acc. PS(H) PS(L)

Karate club 0.70 0.71 132 0.44 yes 0.44 0.48
Les miserables 0.76 0.76 734 0.50 yes 0.47 0.47
Florentine families 0.93 0.98 19 0.10 yes 0.07 0.39
CORAML 0.44 0.62 699380 < 10−2 no 0.29 0.67
CITESEER 0.10 0.25 1707420 < 10−2 no 0.19 0.31
AE photo 0.32 0.43 5239408 < 10−2 no 0.36 0.64
AE computers 0.29 0.38 17900546 < 10−2 no 0.38 0.61
PUBMED 0.19 0.32 31448278 < 10−2 no 0.28 0.59
CORA 0.36 0.54 29695497 < 10−2 no 0.28 0.68
DBLP 0.20 0.42 26684749 < 10−2 no 0.25 0.57

By taking into account both the observed Spearman’s correlations and the re-
sults of the MWU tests it can be concluded that high NC-LID nodes tend to have
significantly higher graph reconstruction errors than low NC-LID nodes. This im-
plies that the NC-LID measure is able to point to “weak” parts of Node2Vec
embeddings prior to their constructions. Consequently, Node2Vec embeddings
could be possibly improved by adjusting Node2Vec parameters individually per
node according to its NC-LID value.

5.3 LID-elastic Node2Vec Evaluation

Embeddings by LID-elastic Node2Vec variants proposed in Section 4 are gener-
ated according to the best configurations of original Node2Vec (Table 2). More
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specifically, for a given graph and embedding dimension we set base p and base q
of LID-elastic Node2Vec variants to p and q of the best corresponding Node2Vec
embedding. As for Node2Vec embeddings examined in the previous section, the
base number of random walks and the base length of random walks are set to
their default values. The embedding dimension is varied in the same way as for
Node2Vec. Then, we examine lid-n2v-rw and lid-n2v-rwpq embeddings by
computing their average link F1 scores, selecting the best embedding across con-
sidered embedding dimensions, and comparing the best LID-elastic Node2Vec
embedding to the best embedding generated by Node2Vec (n2v). The obtained
results are summarized in Table 4 showing the best F1 score of n2v and the em-
bedding dimension in which it is achieved and the best F1 scores of LID-elastic
Node2Vec variants and the corresponding embedding dimensions. The column
“Best” indicates the best graph embedding algorithm according to F1 and I is
the percentage improvement in F1 of a better LID-elastic Node2Vec variant over
n2v.

Table 4. Comparison of Node2Vec and LID-elastic Node2Vec embeddings.

n2v lid-n2v-rw lid-n2v-rwpq

Graph F1 Dim. F1 Dim. F1 Dim. Best I[%]

Karate club 0.78 100 0.83 50 0.85 100 lid-n2v-rwpq 9.4
Les miserables 0.81 100 0.80 100 0.83 200 lid-n2v-rwpq 2.7
Florentine families 0.96 100 0.96 100 0.96 100 all 0.0
CORAML 0.65 25 0.66 50 0.63 25 lid-n2v-rw 1.3
CITESEER 0.24 10 0.25 10 0.28 10 lid-n2v-rwpq 18.7
AE photo 0.50 50 0.52 50 0.49 50 lid-n2v-rw 4.9
AE computers 0.45 50 0.47 100 0.42 50 lid-n2v-rw 4.7
PUBMED 0.39 50 0.43 50 0.42 50 lid-n2v-rw 9.4
CORA 0.57 25 0.60 50 0.59 50 lid-n2v-rw 3.9
DBLP 0.40 25 0.44 25 0.53 50 lid-n2v-rwpq 31.7

For Florentine families (the smallest graph in our experimental corpus) both
LID-elastic Node2Vec variants achieve the same F1 score as n2v. In all other
cases at least one LID-elastic variant is better than n2v. For 5 graphs (out of
10) both LID-elastic variants have higher F1 scores than n2v. The lid-n2v-rw

variant achieves the highest F1 score for 5 graphs, while lid-n2v-rwpq wins in 4
cases. The largest improvements in F1 are achieved by lid-n2v-rwpq for DBLP
and CITESEER. For those two graphs lid-n2v-rwpq significantly outperforms
n2v: F1 is improved by 31.7% and 18.7%, respectively. Significant improvements
(approximately 5% or higher) are also present for 4 other graphs (Karate club,
AE Photo, AE Computers and PUBMED).



LID and Graphs 13

6 Conclusions and Future Work

In this work we have discussed the notion of local intrinsic dimensionality in the
context of graphs, which is the first step towards LID-aware ML/DL algorithms
for graph-structured data. Since graphs are dimensionless objects, existing LID
models could be applied to graphs by computing LID estimators either on graph
embeddings or on graph-based distances.

Inspired by the fundamental connection between the local intrinsic dimen-
sionality and the discriminability of distance functions in Euclidean spaces, we
have proposed the NC-LID metric quantifying the discriminability of the short-
est path distance considering natural communities of nodes in graphs. Then, we
have suggested two LID-elastic modifications of the Node2Vec graph embedding
algorithm in which Node2Vec parameters are personalized per node and adjusted
according to their NC-LID values. Our experimental evaluation of the proposed
LID-elastic Node2Vec modifications on 10 real-world graphs revealed that they
are able to improve Node2Vec embeddings with respect to graph reconstruction
errors.

The current work could be continued in two directions. One direction is
to investigate possibilities for designing LID-related metrics reflecting the dis-
criminability of graph-based distance functions considering expanding subgraph
localities. In the same way as NC-LID, such metrics could be exploited to per-
sonalize and adjust parameters of graph embedding algorithms. Having in mind
that nodes with complex intrinsic localities may have a significant brokerage
role, it would also be interesting to examine correlations between LID-related
scores and node centrality metrics.

The second research direction is related to natural communities. Namely, we
will investigate alternative random walk strategies for graph embedding algo-
rithms that explicitly take into account the inner structure of natural commu-
nities and characteristics of nodes within them.
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(eds.) Similarity Search and Applications. pp. 64–79. Springer International Pub-
lishing, Cham (2017)

9. Houle, M.E.: Local intrinsic dimensionality III: Density and similarity. In: Satoh,
S.e.a. (ed.) Similarity Search and Applications. pp. 248–260. Springer International
Publishing, Cham (2020)

10. Houle, M.E., Schubert, E., Zimek, A.: On the correlation between local intrin-
sic dimensionality and outlierness. In: Marchand-Maillet, S., Silva, Y.N., Chávez,
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