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Abstract. In this short paper, we propose the first cost model for a class of in-
dex structures designed for reverse nearest neighbor (RNN) search, so-called self
pruning approaches. These approaches use estimations of the nearest neighbor
distances of database objects for pruning. We will particularly detail our cost
model for R-Trees but our concepts can easily applied to any tree-like index
structure that implements a self pruning strategy. Our cost model estimates the
number of disk accesses of a given RNN query and, thus, allows to predict the re-
quired I/O costs in any hardware environment. We further explore three variants
regarding the trade-off between estimation accuracy and model efficiency/storage
overhead. Preliminary experiments on synthetic data confirm that the estimations
are accurate compared to the exact query costs.

1 Introduction

Reverse nearest neighbor (RNN) queries are prevalent in many practical applications
since they determine the set of data objects influenced by the query. Specifically, an
RNN query retrieves those objects from the database having the query as one of their
nearest neighbors (NNs). Variants of this basic query introduce the parameter k speci-
fying the number of NNs that are considered (i.e., the query must be among the kNNs
of a true hit), and/or a distinction between query set and answering set (so-called bi-
chromatic scenario compared to the “normal” case that is referred to as mono-chromatic).

Beside a plethora of index structures and algorithms especially designed to optimize
RNN query processing, to the best of our knowledge, no work has been done for esti-
mating the costs of these approaches so far. Predicting the costs for processing a given
query is mandatory for (relational) query optimizers. A cost model allows to generate
efficient query plans and enables effective scheduling. Thus, this work is a first step to-
wards the practical use of the existing query processing algorithms and their respective
data structures in real database systems.

In this short paper, we sketch the idea for a general cost model for RNN queries for a
rather general class of query processing algorithms. Existing algorithms for RNN query
processing can be classified according to the applied strategy of pruning objects from
the search space. Self pruning approaches typically rely on special index structures that



usually offer a higher selectivity and, hence, are more efficient. In turn, these methods
are usually less flexible than mutual pruning approaches in terms of query parametriza-
tion and database updates. Since both pruning strategies are rather different paradigms,
we focus on self pruning methods only. We explore a general way to estimate the num-
ber of index pages that need to be accessed for a given query which allows to predict
the I/O costs on any hardware environment. The cost model will be explained using a
concrete instance of self pruning methods, the RdNN tree [1] which basically uses a
member of the R-Tree family. However, we want to emphasize that our general idea is
independent of the used index and can be adapted to any tree-like index implementing a
self pruning method very easily. The reason for this is that the only basic assumption of
our cost model is that information on the size of the page regions, e.g. minimum bound-
ing rectangles (MBRs) in case of an R-Tree, of index nodes is know. This information
typically contains only a very few numbers and can easily be materialized in the cache.

The remainder is organized as follows. Section 2 gives an overview of related work.
In Section 3, we explain our new cost model for RNN query processing using self
pruning methods. Some preliminary experiments are presented in Section 4. Finally,
Section 5 concludes the paper.

2 Related Work

Self pruning approaches like [2, 1] are usually designed on top of a tree-like index struc-
ture. They are based on the observation that if the distance between any database object
o and the query q is smaller than the kNN distance of o, o is part of the result set, i.e.,
a RNN of q. Otherwise, o can be pruned. Consequently, self pruning approaches try to
exactly compute or (conservatively) approximate the kNN distance of each index entry
e. If this estimate is smaller than the distance of e to the query q, then e can be pruned.
Often, self pruning approaches simply pre-compute kNN distances of database points
and propagate maxima of these distances to higher level index nodes for pruning. The
major limitation of these approaches is that the pre-computation is time and memory
consuming and less flexible to database updates. These methods are usually limited to
one specific or very few values of k. Approaches like [3–9] try to overcome these limita-
tions by using approximations of kNN distances (for any k) but this yields an additional
refinement overhead – or only approximate results. Mutual pruning approaches such as
[10, 11] use other points to prune a given index entry e. For instance, [11] iteratively
constructs Voronoi hyper-planes around the query q from a nearest neighbor ranking
w.r.t. q. Points and index entries that are beyond k Voronoi hyper-planes w.r.t. q can be
pruned. Mutual pruning approaches need an additional refinement of candidates (i.e., a
kNN query for not pruned objects) to compute the final results.

As mentioned above, to the best of our knowledge, there are no cost models for RNN
algorithms proposed so far. However, there are a lot of cost models for other query types
on R-Trees, including NN queries (e.g. [12–14]) and spatial join queries (e.g. [15, 16]).
Closest to our work is the method for range queries independently proposed by [17] and
[18]. Both approaches assume that the MBR of each node in the underlying R-Tree is
given and estimate the disc accesses using the concept of the Minkowski sum. We will
revisit details on this model later.



(a) (a) R*-Tree. (b) (b) RdNN-Tree.

Fig. 1: Visualization of an RdNN-Tree (b) as an extension of the R*-Tree (a).

3 A Cost Model for Self Pruning Approaches

For a positive integer k and a query object q, a k-NN query retrieves the set NN(q, k)
including those k points having the smallest distance dist(., .) to q. In case of ties,
this set may have more than k elements. The distance between p and its kNN is called
kNN-distance (denoted by kNNdist(p)) of p. A RkNN query with query object q can
be defined as those objects having q as one of their kNN, i.e., RNN(q, k) = {o ∈
DB|o ∈ NN(q, k)}. If k is clear from context, we omit it and use NN, NNdist(.),
and RNN instead of kNN, kNNdist(.), and RkNN.

The basic observation behind self-pruning approaches is that an object p qualifies
for a given RNN query if and only if dist(p, q) ≤ NNdist(p). Thus, materializing
(exact or approximate) NN-distances of all database objects provides a powerful and
very selective pruning possibility. Self-pruning approaches use any conventional index,
e.g. an R*-tree (as in the RdNN-Tree [1]), to organize the data objects but additionally
stores the pre-computed NN-distances. For a data page of the index containing a set
of database objects, an approximation of the NN-distances of all points of this page
needs to be derived and this approximation needs to be conservative for producing ex-
act results. This can easily be done by aggregating the maximum of all NN-distances
in that page. For directory pages of a tree-based index containing child pages each as-
sociated with a NN-distance estimate of its corresponding sub-tree, the procedure is
similar: the maximum NN-distance of all child nodes need to be aggregated. Thus,
each node N of the index aggregates the maximum NN-distance of all objects repre-
sented by N . The extension of an R*-Tree to an RdNN-Tree is visualized in Figure 1.
The aggregated maximum NN-distance of each node N , denoted by NNdist(N), is
visualized as box with rounded corners around the corresponding page regions (PRs).
These distances can be used during query processing: node N may contain a true hit
if for the minimum distance MINDIST between an object q and the PR of N it
holds: MINDIST (q,N) ≤ NNdist(N). In this case, the subtree of N needs to be
traversed. Else, node N can be pruned.



Fig. 2: Range query with radius ε and the page region of an arbitrary index page (left)
and the corresponding spatially extended region a.k.a. Minkowski sum (right).

We will show our ideas using the RdNN, assuming that the PRs of the underlying
index are minimum bounding rectangles (MBRs), the distance approximations of direc-
tory nodes are conservative, and the index is tree-based in the following but our ideas
can be extended to any other shapes, approximations, and indexes. The basic observa-
tion of our approach is that the situation depicted in Figure 1(b) is related to the cost
model for (aka ε-)range queries [17, 18] which estimates the probability of an intersec-
tion between the query (circle around q with radius ε) and the PRs of each level of the
tree, i.e., the probability that the corresponding subtree needs to be traversed. For this
purpose, the PRs are spatially extended by the radius ε as it is done in self-pruning ap-
proaches. However, for ε-range queries the spatial extend of all PRs is fixed to ε, while
for the RdNN-Tree each PR has its own aggregated maximum NN-distance specifying
the spatial extend.

Our cost model basically estimates for each node in the index tree the probability
of being traversed when a given query is launched in order to determine the average
amount of nodes that need to be accessed. It is based on the same assumptions claimed
in [17, 18]; the most basic assumption is that we have information on the PRs of each
node in the index. We first start with revisiting the cost model of range queries.

For a range query with radius ε, the access probability of a nodeN with page region
N.Reg 3 is given by

PR(Access(N)) =
V ol(N.Reg spatially extended by ε)

V ol(data space)
,

where V ol(.) computes the volume of a region. The page region N.Reg spatially ex-
tended by the query radius ε correspond to a bounding box with rounded corners such
that the edges have distance ε to the original page region N.Reg. This region is known
as the Minkowski sum. The idea is visualized in Figure 2.

In order to be able to compute the probability of accessing a given nodeN , we need
to compute the volume of the Minkowski sum of the page region N.Reg of N and ε
(corresponding to the numerator in the above formular). Let N.e be the edge length of
the page region of N , then the volume of the Minkowski sum of N.Reg and ε is

3 As mentioned above, our method is not restricted to the exact geometry of page regions.



V ol(N.Reg spatially extended by ε) = V olMinkowski(N.Reg, ε) =∑
0≤i≤d

(
d

i

)
· 2d−i ·N.ei ·

V (Sphere(d−i)(ε))

2d−i
=
∑

0≤i≤d

(
d

i

)
·N.ei · V (Sphere(d−i), ε).

where Sphere(d−i)(ε) is a (d − i)-dimensional sphere of radius ε. The volume of this
sphere, V ol(Sphere(d−i)(ε)), can be computed using the Gamma function:

V ol(Sphere(d−i)(ε)) =
π

d−i
2 · εd−i

Γ (d−i2 + 1)
.

The Minkowski volume can be used to calculate the volume of any node N of the
index and can be used to compute the probability that N needs to be accessed. In order
to estimate the costs for the entire index, we need to determine the access probabilities
for all index nodes. For that purpose, we need the edge lengths N.e of all index nodes
N . One way to get this is to materialize these values which is typically not a significant
overhead and can often even be hold in main memory. If the overhead of storing and
updating this information is too large, [17] and [18] offer a way to estimate these val-
ues. This estimation is done level-wise: the number of nodes Ni on level i of the tree,
denoted by Card(Ni), can recursively be obtained from the average storage utilization.
Under the assumption that the MBR of each node Ni is a hyper-cube with equal edge
length Ni.e and that its expected volume is V ol(Ni) = V ol(data space) /Card(Ni)
we can estimate the average edge length of Ni as

Ni.e =
d

√
V ol(data space)
Card(Ni)

.

Thus, the total number of index nodes (i.e., pages) accessed while processing an
ε-range query can be approximated as:

# page accesses =
indexheight∑

i=1

Card(Ni) · V olMinkowski(
d

√
V ol(data space)
Card(Ni)

, ε).

For the transformation of this model from range queries to RNN queries we first ex-
plore the relationship between these two query types. Intuitively, range queries retrieve
those objects o that are enclosed in a sphere centered at the query object q having the
query range ε as radius, i.e., dist(q, o) ≤ ε. When a self pruning approach is imple-
mented using pre-computed NN-distances, RNN queries retrieve those objects o that
are the center of a sphere which has the NN-distance of o as radius and in which q
is enclosed, i.e., dist(q, o) ≤ NNdist(o). It should be mentioned, however, that this
relationship cannot be used to process RNN queries like range queries in general. Only
the aggregation and materialization of the NN-distances in the index as proposed in the
literature enables to build this relationship.

During the processing of a range query, a page must be accessed if its page region
(e.g. MBR) intersects with the query range, i.e., the sphere with radius ε centered at q.



For a RNN query, a page must be accessed if the Minkowski sum of its page region
and its maximum NN-distance includes the query. Thus, for any node N in the index,
we need to use its maximum NN-distance, NNdist(N) to compute the Minkowski
volume:

V olMinkowski(N.e,NNdist(N)) =
∑

0≤i≤d

(
d

i

)
·N.ei · V ol(Sphere(d−i)(NNdist(N))).

The edge length can be approximated as described above. The remaining challenge
now is that while for range queries, the radius ε is fixed in all Minkowski volumes, the
aggregated maximum NN-distances of the nodes on level index i can be rather different.
In the following, we propose three variants to solve this.
Variant 1: The first variant accounts for the variation of NN-distances and sums up all
Minkowski volumes of all index nodes. Note that this requires to have access to all NN-
distance values of all nodes Ni on all levels i of the index which could be materialized
(for small data sets even in the cache). The number of page accesses is

# page accesses =
indexheight∑

i=1

∑
n∈Ni

V olMinkowski(
d

√
V ol(data space)

Card(n)
, NNdist(n)).

Variant 2: If the index is large and pre-computing/materialization of NN-distances for
all index entries is not an option, the necessary information needs to be fetched from
disc involving a huge overhead of I/O accesses (all nodes of the tree need to be ac-
cessed). We can circumvent this by taking the NN-distance of the root Root of the
index which is the maximum NN-distances of all data objects. Obviously, this comes to
the cost of decreasing the accuracy of the estimation. If M is the number of all nodes
of the index, then, we can estimate the number of page accesses by

# page accesses =M · V olMinkowski(
d

√
V ol(data space)
Card(Ni)

, NNdist(Root)).

Variant 3: The variants discussed above basically trade-off the accuracy of the estima-
tion and the costs for obtaining the estimation (in terms of storage overhead or, if the
required information needs to be fetched from disc, in terms of time). As a compromise
we propose to aggregate the average NN-distances for each index level which causes
much less overhead to maintain and materialize than in Variant 1 but should give better
estimates than Variant 2. The average NN-distance of all nodes Ni of level i is

NNdistavgi =

∑
Ni
NNdist(Ni)

Card(Ni)
.

Then the number of page accesses can be calculated as

# page accesses =
indexheight∑

i=1

Card(Ni)·V olMinkowski(
d

√
V ol(data space)
Card(Ni)

, NNdistavgi ).
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Fig. 3: Accuracy of the estimation w.r.t. varying data size.

‐10

‐8

‐6

‐4

‐2

0

1 5 10 15

CM Nodes

CM Levels

CM Root

abs.
error

k

‐20

‐18

‐16

‐14

‐12 CM Avg

(a) Clustered data: absolute error.

‐0,5

‐0,4

‐0,3

‐0,2

‐0,1

0

1 5 10 15

CM Nodes

CM Levels

CM Root

rel.
error

k

‐1

‐0,9

‐0,8

‐0,7

‐0,6

0,5

CM Avg

(b) Clustered data: relative error.

Fig. 4: Accuracy of the estimation w.r.t. varying k.

4 Preliminary Empirical Study

We evaluate how accurate our model can estimate the real page accesses for a given
query and report absolute and relative estimation errors for all three variants discussed
above for the RdNN-tree implementation of ELKI [19] with a page size of 8K. We
used a 3D synthetic data sets with 10 clusters of equal size each following a Gaussian
distribution with random mean and standard deviation and an additional 10% uniformly
distributed noise. In all runs, we used 50% of the database points and another 50% of
randomly generated points as query objects and averaged the results.

Figure 3 displays the accuracy w.r.t. the database size (k = 1). Both the absolute
and relative error is considerably small and stable and only grows slowly with increas-
ing database size. Variant 2 that only considers the root node overestimates the costs
while all other estimations are conservative. Figure 4 depicts the accuracy of the model
variants w.r.t. the query parameter k. The database size is fixed at 200,000 points. Here,
all estimates are conservative. With increasing k, the error increases most likely because
the kNN distance exponentially contributes to the Minkowski volume.

We also conducted first experiments on the impact of the data dimensionality (omit-
ted due to space limitations). The results show low effects of the data dimensionality as
long as it is moderate (> 20), but we assume that a potential break-down of the index
may not be accommodated adequately in the cost model.



5 Discussion

In this short paper, we present a first cost model for RNN query processing algorithms
using self pruning. We described three different variants that explore the trade-off be-
tween estimation accuracy and efficiency/storage overhead. The cost model estimates
the number of page accesses for RNN queries on a given index and, thus, is independent
of any hardware environment. Our preliminary results confirm that the accuracy of the
cost model is promising in a broad range of settings.
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