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Abstract. The set similarity join (SSJ) is an important operation in
data science. For example, the SSJ operation relates data from differ-
ent sources or finds plagiarism. Common SSJ approaches are based on
the filter-and-verification framework. Existing approaches are sequential
(single-core), use multi-threading, or Map-Reduce-based distributed par-
allelization. The amount of data to be processed today is large and keeps
growing. On the other hand, the SSJ is a compute-intensive operation.
None of the existing SSJ methods scales to large datasets. Single- and
multi-core-based methods are limited in terms of hardware. MapReduce-
based methods do not scale due to too high and/or skewed data repli-
cation. We propose a novel, highly scalable distributed SSJ approach.
It overcomes the limits and bottlenecks of existing parallel SSJ ap-
proaches. With a cost-based heuristic and a data-independent scaling
mechanism we avoid intra-node data replication and recomputation. A
heuristic assigns similar shares of compute costs to each node. A RAM
usage estimation prevents swapping, which is critical for the runtime.
Our approach significantly scales up the SSJ execution and processes
much larger datasets than all parallel approaches designed so far.

1 Introduction

A major challenge in data science today is to compare and relate data of similar
nature. One important operation to relate data is the join operation known
from relational databases. The join operation finds all record pairs from two
tables, which fulfill a given predicate. For basic predicates, such as equality,
there exist efficient methods to compute the join. However, for many real-world
problems the predicate is more complex: it involves similarity. If we assume that
records are represented by sets, we could use existing set similarity measures
to compare them pairwise. Given a collection of records (sets) R, formed over
the universe U of tokens (set elements), and a similarity function between two
records, sim : P(U) ×P(U) → [0, 1]; the set similarity self-join (SSJ) of R
computes all pairs of sets (r, s) ∈ R×R whose similarity exceeds a user-defined
threshold θ, 0 < θ ≤ 1, i. e., all pairs (r, s) with sim(r, s) ≥ θ. Without loss of

generality, we focus on the Jaccard similarity function sim(r, s) = |r∩s|
|r∪s| and the

self-join.



2 F. Fier et al.

A naive approach to compute the SSJ compares all possible pairs. Since the
complexity of such an approach is quadratic, it is not feasible even for small
datasets. The most prominent approaches in the literature to compute the SSJ
more efficiently are based on the filter-and-verification framework. Filter-and-
verification-based approaches do not reduce the worst-case complexity (which is
quadratic), but reduce the practical compute effort when favorable input data
characteristics are present. The framework first generates candidate pairs by
creating and probing an inverted index [1] and verifies the candidates in a second
step. Sophisticated filters such as the prefix filter keep the number of candidate
pairs low [2]. This method is efficient on single cores [6]. However, it does not
scale easily to large datasets.

We proposed a novel data-parallel filter-and-verification approach using multi-
threading [5]. It significantly scales up the SSJ computation. However, the num-
ber of available CPU cores limits scalability. The maximum amount of input
we could process with this method on our hardware was roughly 25 GB. To
compute the SSJ on larger datasets, various MapReduce-based distributed ap-
proaches evolved. The MapReduce programming paradigm requires indepen-
dently computable work shares. The approaches use existing filters from the
filter-and-verification framework to replicate and group data into such indepen-
dent shares. We showed that the amount of data these approaches can process is
limited [3]. In our experimental setup, the maximum possible input was roughly
12 GB, which is even smaller than what the multi-threaded approach could pro-
cess. Users cannot shift the limit by adding more compute nodes due to high
and skewed data replication.

The input dataset size and scalability limitations of the previously mentioned
approaches motivate our novel distributed-parallel SSJ approach, which pushes
these limits significantly. We experimentally show that our new approach scales
to hundreds of gigabytes and that it is robust against unfavorable data character-
istics1. We use existing filter-and-verification techniques as a basis and leverage
intra-node multicore parallelization by default. The major advances compared
to existing distributed approaches are as as follows. First, our approach avoids
intra-node replication since replication is the main bottleneck of the MapReduce
approaches due to our previous analysis. It assures that each record is present
only once in the main memory of each node. Each node runs only one single
multi-threaded SSJ instance in order to efficiently share commonly used data,
such as the inverted index. Second, it avoids recomputation, i. e., the repeated
validation of the same candidate record pair. Third, it removes algorithmic data
dependencies that lead to a skewed execution load as observed in MapReduce
approaches using prefix filtering [3].

Our approach solely requires a standard shared nothing architecture for a
distributed execution. Our approach is generic, thus it is independent of a specific
distributed system. The quadratic nature of the SSJ problem implies that scaling
up to larger input dataset sizes may require adding a quadratic number of nodes
in the worst case. To avoid the worst case, our distributed-parallel approach

1 Our implementation is available at https://github.com/fabiyon/dist-ssj-sisap.

https://github.com/fabiyon/dist-ssj-sisap
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Fig. 1. Schematic dataflow of our distributed-parallel SSJ approach.

uses techniques to distribute the compute load evenly among nodes. However,
depending on the dataset size, token distribution, and similarity threshold, the
demand for compute nodes might still be high. Modern cloud computing allows
to obtain a high number of compute nodes for a limited timeframe. Thus, we
may safely assume that it is realistic today to have hundreds or even thousands
of compute nodes available for just one operation. The main contributions of
this paper are as follows:

– We introduce a cost-based heuristic to break down the SSJ computation into
units that are computed independently in parallel.

– We additionally provide a data-independent scaling mechanism that allows
to further subdivide each unit if necessary and a RAM usage estimation to
avoid swapping.

– We experimentally verify that our distributed SSJ approach scales to hun-
dreds of gigabytes of input data.

In the following section, we introduce our solution in detail. Section 3 exper-
imentally shows its behavior on large datasets and large numbers of compute
nodes. Section 4 concludes this paper. We provide an extended version of this
paper with an additional description of experimental datasets as well as com-
prehensive tables and figures of our experimental results [4].

2 Distributing Filter-and-verification-based SSJ

Figure 1 provides an overview on our distributed-parallel SSJ approach. Step (1)
preprocesses and tokenizes the raw input data. In addition, we require this step
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to compute a statistic of the lengths of all records. The length statistic consists of
tuples {(l, |Rl|)} where l is a record length and |Rl| is the number of the records
with this length. Step (2), referred to as optimizer, realizes the major part of our
distributed SSJ approach. It generates parameters for each node to distribute
the compute workload. Step (3) computes the SSJ based on the parameters of
the optimizer. We require the tokenized input data and the length statistics to
be available on every compute node. The join is an extension of our multicore
SSJ as described in [5]. The extension includes the set of parameters from the
optimizer. The parameters limit the records to be indexed and joined on each
node such that the result is complete and free of duplicates.

Our solution assumes that each node runs exactly one instance of the multi-
core SSJ, exclusively using the nodes’ hardware resources. By instance, we refer
to the main thread of our multicore SSJ together with the worker threads it
spawns during execution. We choose this setup to share common data structures
such as inverted indexes. As it is common in MapReduce-based distributed sys-
tems, SSJ instances cannot communicate with each other and do not share data
during execution. The instances have all information for the execution available
before the beginning of the join computation. Each instance indexes and probes
only subsets of the input dataset to independently compute a partial join result.

In the following, we introduce the optimizer. It runs before the actual join
computation and divides the SSJ computation into independently computable
units. The optimizer consists of a data-dependent cost-based heuristic and a
data-independent scaling mechanism. Furthermore, we provide estimations of
RAM demand and cost distribution and a heuristic to find suitable optimizer
parameters. We first describe our cost-based heuristic.

2.1 Data-Dependent Cost-Based Heuristic

One goal of our cost-based heuristic is to avoid the cross product by only re-
garding record pairs with matching lengths. Regarding lengths to filter out hope-
less pairs is a common technique, which most filter-and-verification approaches
use [1]. This filter is effective on datasets with varying lengths and cheap to
apply by using the length statistic computed beforehand. As discussed in the
introduction, we focus on the Jaccard similarity function and the self-join.

Regarding Jaccard similarity and a record r, the length of a similar record s

has to be in the interval [dθ · |r|e; b |r|θ c]. In the self-join case, the probe record
set is equal to the index record set. To avoid duplicates and unnecessary recom-
putation, we subsequently consider only probe records larger than the length

of an index record r: [|r|; b |r|θ c]. Figure 2 shows this length relationship for a
similarity threshold of θ = 0.7. For each record length on the y axis, it shows
on the x axis, which record lengths have to be considered as join candidates.
Now consider that we index the lengths on the y axis and probe the lengths on
the x axis. Then each square in the figure represents a pair of index and probe
lengths (i, p), which has to be joined for a complete result without duplicates.
Each square can potentially be joined independently. However, for our heuristic,
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Fig. 2. Example join matrix for θ = 0.7. Squares with the same index length compose
one slice.

Table 1. Symbol reference.

R input dataset
θ similarity threshold
|r| number of tokens in r
|Rl| number of records with length l
P(l) prefix length of length l: P(l) = l − dθ · le+ 1
i index prefix length
p probe prefix length
rid record ID
n node parameter for cost-based heuristic
m modulo: data-independent scaling parameter
modgroup group parameter to check if a record is in a sub slice
indexLengths set of index lengths for one SSJ instance
probeLengths set of probe lengths for one SSJ instance

we choose to group squares with the same index lengths together and refer to
them as slices. For each slice i, we estimate the probe costs C(i) as follows:

C(i) = P(i) · |Ri| ·
b iθ c∑
p=i

P(p) · |Rp| (1)

Table 1 serves as a symbol reference for the symbols we use in the equation
and throughout this paper. For the cost estimation we assume that each probe
of the inverted index causes a cost of the length of the postings list. We do not
know the exact sizes of the postings lists a priori, because they are dependent
on the token distribution. Instead, we assume the worst case, where all index
records of the probed length are contained in the postings list. With regard to
an index length i, the possible probe lengths p are in [i, b iθ c]. The total number
of probes of one slice is the sum over the prefix of p (denoted as P(p)) multiplied
by the number of records with this length |Rp| for all probe lengths. The number
of index tokens of the slice is computed the same way and multiplied.
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Table 2. Example of input data lengths, matching probe lengths, number of records,
and corresponding slice costs for θ = 0.7.

index length i probe lengths {p} |Ri| C(i)
1 1 10 100
2 2 30 900
3 3,4 80 86 400
4 4,5 500 1 800 000
5 5,6,7 400 1 416 000
6 6,7,8 200 568 000
7 7,8 190 581 400
8 8 150 202 500

Example 1. Table 2 shows the cost computation for a hypothetical dataset. The
dataset has eight length values as shown in the first column. The second column
shows matching probe lengths for each index length. |Ri| shows the hypothetical
length count per index length. Column C(i) shows the resulting slice costs. ut

Example 1 highlights that slices can exhibit uneven costs. Thus, we assign
sets of slices to compute nodes with the intention to distribute the costs evenly.
We use a greedy heuristic to achieve an even cost distribution. We assume that
the user chooses a seed number of compute nodes n (the total number of compute
nodes for the SSJ computation can be higher depending on further parameters).
We sort the slice costs C(i) in ascending order. Then we assign each slice to each
node in a round robin fashion. Thus, the first node receives the slice with the
largest cost, the second node receives the second-largest, and when the last node
is reached, the first node obtains the next slice again. The following example
shows our greedy cost distribution heuristic:

Example 2. Consider again Table 2 and n = 2. The highest cost appears for
i = 4. Thus, we assign this slice to the first node. The next highest cost appears
for i = 5. Thus, we assign it to the second node. The third one is i = 7, assigned
to node 1, and so on. This approach generates the following index and probe
lengths:
Node 1: index lengths 2,4,7,8, probe lengths 2,4,5,7,8, total costs 2 584 800 and
Node 2: index lengths 1,3,5,6, probe lengths 1,3,4,5,6,7,8, total costs 2 070 500.

ut

As discussed before, our cost estimation cannot consider the specific sizes of
the postings lists. The estimation assumes that all records with matching lengths
are present in the postings lists, which is only the worst case and pessimistic.
On the other hand, the heuristic ignores the costs for the verification. The veri-
fication is dependent on the number of candidates, which we cannot estimate a
priori without actually computing the join. Thus, our heuristic potentially un-
derestimates the costs if a dataset has many candidates. In our experiments, we
show the strengths and limits of our approach. Next, we introduce the second
part of the optimizer, the data-independent scaling mechanism.
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2.2 Data-Independent Scaling Mechanism

The scaling mechanism subdivides each slice (cf. Subsection 2.1) by partitioning
its probe records. Our join computation assigns subsequent integer record IDs
(rids) to each input record. We use the modulo function to assign a probe record
to one partition as shown in the following equation:

isRecordInProbeSubset(rid,m,modgroup) = (rid mod m
?
= modgroup) (2)

The user-defined parameter m sets the number of sub slices to generate. The
modgroup is in the interval [0,m − 1] and determines the sub slice a record is
assigned to. The following example illustrates how our scaling approach assigns
records to sub slices:

Example 3. Assume m = 2. One sub slice receives all records where the func-
tion returns true for modgroup = 0 and another sub slice obtains the ones for
modgroup = 1. We ordered the records in our input datasets by ascending record
lengths. Thus, we expect this approach to be robust against length skew in the
input data. It assigns records of all probe lengths to each sub slice round robin.

ut

The scaling mechanism together with the cost-based heuristic form the main
building blocks of the optimizer of our SSJ approach. To find suitable parameter
values for m and n, we next discuss how to evaluate the quality of concrete
instances of these parameters. We start with an estimation of RAM demand.

2.3 RAM Demand

Our heuristic and the scaling mechanism do not guarantee that the computation
of one (sub) slice stays within the RAM size of a given compute node. If the
SSJ computation allocates more memory than the system physically provides,
swapping occurs. Swapping leads to severe runtime penalties, which we must
avoid. The main idea to avoid RAM overutilization is to find optimization pa-
rameters m and n such that the RAM usage stays within system limits. With
the heuristic from Section 2.1, a concrete value for n, a similarity threshold θ,
and the length statistics of a concrete dataset {(r, |Rl|)} we compute sets of
lengths indexLengths and probeLengths for each node. We use these length sets
for RAM demand estimations subsequently.

We use an extension of our multicore SSJ on each compute node [5]. The
extension includes the parameters indexLengths, probeLengths, m, and modgroup
to limit the index and probe records. Considering the extended multicore SSJ,
the inverted index, probe records, and candidates demand the largest parts of
main memory. Without loss of generality, we estimate the demands for all three
categories for our concrete SSJ implementation. The estimation is applicable to
possible other join implementations by adjusting the size factors of the employed
data structures.
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First, we focus on the inverted index. Our implementation of the inverted
index holds the postings list entries in a struct of 12 Bytes. The number of
postings list entries is the prefix length times the number of records P(l) · |Rl|
for each index length l. We can estimate the size of the inverted index (in Bytes)
as follows:

indexRamDemand(indexLengths) =
∑

l∈indexLengths

P(l) · |Rl| · 12 (3)

Similarly, we estimate the RAM demand for the probe records. One record
in our implementation uses 60 Bytes plus each token stored as 4 Byte integer.
We estimate the space requirement for the probe records (in Bytes) as follows:

probeRamDemand(probeLengths,m) =
∑

l∈probeLengths

|Rl| · (60 + l · 4)

m
(4)

Lastly, we focus on the candidate size. Our SSJ uses 12 Bytes to store each
candidate record in main memory until verification. Each thread keeps a local
list of candidates for its subset of probe records. In the worst case, all indexed
records are candidates. However, it is pessimistic to assume that all threads hold
all index records as candidates at the same time. In our experiments, we found
that it is safe to assume 1

3 to 2
3 of the index records to be present on each thread

at a time on our datasets. Thus, we include a candidate factor candFact in our
estimation. We estimate the candidate RAM demand (in Bytes) as follows:

candidateRamDemand(indexLengths, numberThreads, candFact) =∑
l∈indexLengths

|Rl| · 12 · numberThreads · candFact (5)

To avoid swapping, the sum of all demands must stay below the system
limit of a compute node leaving space for other storage needs and the operating
system. We found the static space demand to be below 4 GB on the system we
run our experiments on and thus consider this value in the following.

Example 4. Consider the dataset ORKU with scaling factor 100, θ = 0.6, m =
64, n = 8, and numberThreads = 24. Over all slices, we can compute a maxi-
mum index RAM demand of 21 GB, 2 GB for the probe records, and up to 10 GB
for candidates. We estimate the total demand including the static demand to be
37 GB. In fact, on our system with 32 GB RAM, this parameter combination
leads to heavy swapping. The runtime of each slice is above 12 hours. When we
changed the parameters to m = 16 and n = 32 (which equals the total number
of nodes in the previous configuration, 512) the total estimated RAM demand
decreases to 24 GB. The maximum runtime per slice in this configuration is 300
seconds and no swapping occurs. The example motivates that it is crucial to find
a suitable parameter configuration, which keeps the memory demand below the
system limit to achieve an acceptable runtime for the join operation. ut
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Note that our data-independent scaling approach focuses only on probe
records. In case the set of indexLengths contains solely one length and the corre-
sponding indexRamDemand exceeds the available main memory, our approach
does not provide a means to further reduce the index size. However, if an index
exceeds available main memory it is possible to partition the index records, i. e.,
with a modulo function in the same way as we applied it to the probe records. We
do not elaborate on further reducing the index size, because we cannot observe
such an extreme index skew within our experiments even on highly enlarged
datasets. Next, we discuss the cost distribution among the compute nodes.

2.4 Cost Distribution Quality

Even without swapping, the choice of parameter n might be crucial for the
runtime depending on the length distribution of the input dataset. Example 5
illustrates and motivates the need for an appropriate parameter choice.
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Fig. 3. AOL×10 runtimes.
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Fig. 4. ENRO×10 runtimes.

Example 5. Figures 3 and 4 visualize the runtimes of AOL and ENRO, both
increased with scaling factor 10, for θ = 0.6 varying both parameters m and n.
The circle sizes represent the runtime. The same color marks combinations of
parameters with the same total number of nodes. For example, the parameter
combination m = 8 and n = 4 uses 32 nodes in total. Parameter combination
m = 4 and n = 8 also uses 32 nodes and therefore has the same color assigned.
The numbers above the circles are the maximum runtimes over all slices in sec-
onds followed by the total number of nodes in brackets. For ENRO×10 a higher
n is beneficial for an improved runtime. That is, the runtime with parameters
m = 2 and n = 16 is lower than with parameters m = 8 and n = 4 for the same
total amount of nodes of 32. On the other hand, for AOL×10, a higher value
of n does not lead to improved runtimes. A higher m parameter is effective for
both datasets. The effectiveness of parameter m on both datasets is expected,
because it linearly scales the number of probe records. ut



10 F. Fier et al.

Table 3. Example for input data length skew. Columns show hypothetical input data
lengths, matching probe lengths, and the number of records for AOL and ENRO for
θ = 0.6.

index length i probe lengths {p} AOL |Ri| ENRO |Ri|
1 1 2705785 149
2 2,3 2026952 361
3 3,4,5 2051010 594
4 4,5,6 1457075 814
5 5,6,7,8 849944 1029
6 6,7,8,9,10 445489 1141
7 7,8,9,10,11 225401 1301
8 8,9,10,11,12,13 117962 1386

In Example 5, the length distributions of the datasets are essential for the
efficiency of parameter n regarding runtime. AOL shows significantly more short
records than ENRO. For example, in AOL there are 1.4 to 2.7 million records
with the lengths 1 to 4, which corresponds to roughly 80 percent of the total
number of records in AOL. ENRO has only 149 to 814 records in this length
range, which corresponds to less than 1 percent of the records in ENRO. Table 3
lists matching probe lengths and record counts of AOL and ENRO for a low
similarity threshold θ = 0.6. The slices of AOL for i ∈ 1, 2, 3, 4 are large in
relation to the number of total records, while the slices of ENRO remain small.
The cost-based heuristic is less effective for AOL due to its skewed record lengths.
Furthermore, depending on the choice of n, this length skew results in cost skew
over the slices. In this example, the costs for AOL are less skewed for n = 4
compared to higher values of n.

To evenly distribute the compute costs over the nodes, we aim to find the
best n out of a given value range regarding a distribution quality function.
Given one n, we can compute the maximum cost deviation over all slices with
max{C(i)} ÷min{C(j)} for i, j ∈ [0;n − 1]. Given a valueRange for n, we can
then minimize this deviation as follows:

min
n∈valueRange

=

{
max

i∈[0;n−1]
{C(i)} ÷ min

j∈[0;n−1]
{C(j)}

}
(6)

Example 6. Consider AOL×10, θ = 0.6, and n ∈ {4, 8, 16, 32}. Using Equation 6,
n = 4 has the lowest maximum cost deviation of 4.16. For higher values of n
the deviation varies between 200 and 230 000. For ENRO×10 and the same
parameters, the lowest deviation is 1.02 for n = 4, followed by 1.05 for n = 8,
1.09 for n = 16, and 1.21 for n = 32. For both datasets, our cost distribution
quality estimation chooses a good value for parameter n. Our estimation might
not necessarily lead to the optimal parameter value regarding runtime, but it
avoids unfavorable values. ut

In the following subsection, we discuss how to use these cost distribution
considerations together with the RAM estimation to find suitable parameter
values m and n.
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2.5 Finding Suitable Parameter Values

Our approach uses the two parameters m and n. Based on the previous discus-
sion about RAM demand and cost distribution we propose the following strategy
to determine parameter values, which avoid RAM overutilization and cost skew.
We assume that the user chooses a total number of compute nodes t as a seed,
which should preferably be a power of two for practical reasons. For each pos-
sible m and n (such that m · n = t) we compute the estimated demand for
RAM (cf. Section 2.3) and the minimum and maximum cost over all slices (cf.
Section 2.4). We can prune all parameter combinations with a RAM demand
above the system limit. We then choose the parameter combination (m,n) with
the lowest cost deviation. In case all parameter combinations are pruned, we set
the total number of nodes t = t · 2 and re-run the previous computation until a
suitable combination is found. If the resulting t is above the number of available
compute nodes, the computation should be split into subsequent phases. The
described strategy finds only the minimum m parameter value with respect to
t. Users may increase m to achieve lower runtimes. In our experiments, we show
the applicability of our approach to find suitable parameters.

3 Experiments

This section presents our experimental analysis. We focus on scalability, varying
the parameters m and n, the input dataset sizes, and the similarity threshold
θ. Based on the shortcomings of manually choosing parameter values, we subse-
quently discuss our strategy to find suitable parameter values m and n.

To compute the join on one slice we use a multicore C++ SSJ implementation
running it on each compute node by extending our previous multicore SSJ with
the parameters indexLengths, probeLengths, m, and modgroup. By default, we
run the multicore SSJ with the optimal parameters [5]. We enable the position
filter and set the number of threads to 24, which is optimal on our hardware:
Each node is equipped with two Xeon E5-2620 2GHz of 6 cores each (with hyper-
threading enabled, i. e., 24 logical cores per node), 24 GBs of RAM, and two 1 TB
hard disks. Whenever we report runtimes, we refer to the maximum runtime over
all slices since the maximum runtime determines the overall runtime.

As input datasets, we use the 10 real-world and two synthetic datasets (cf.
extended paper [4]). Since we focus on larger datasets, we use only increased
datasets with the scaling factors 10, 25, 50, and 100. We start our experiments
with a scaling factor of 10, because these are the largest datasets joinable with
both the MapReduce and the multicore approaches so far. Our novel distributed
approach is able to compute the join on much larger datasets as we show subse-
quently.

3.1 Impact of Cost-based Heuristic

In this experiment, we show how the runtime develops varying parameter n. We
do not set parameter m. Thus, the probe records per slice remain complete with
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Fig. 5. Maximum runtimes over all slices for n ∈ {4, 8, 16, 32} for three exemplary
datasets AOL, KOSA, and ORKU. n = 1 represents the multicore SSJ without dis-
tributed parallelization. Thresholds θ ∈ {0.6, 0.75, 0.9}.

regard to the probeLengths computed with the heuristic from Section 2.1. We
use all datasets increased by factor 10, θ ∈ {0.6, 0.75, 0.9}, n ∈ {4, 8, 16, 32} and
compare it to the non-distributed multicore SSJ (cf. Figure 5).

For all datasets and all thresholds, n = 4 significantly reduces all runtimes
compared to n = 1. The speedups vary between 1.8 (AOL×10, θ = 0.75) and
13.9 (ORKU×10, θ = 0.6). The average speedup over all datasets and thresholds
is 3.7. For higher values of n the speedups decrease. Adding more than 8 or 16
nodes leads to only small runtime decreases for most datasets and thresholds.
This effect is due to the nature of our heuristic. Recall that one slice consists
of an index length and all its possible probe lengths. The length skew of the
input datasets and the similarity threshold determine the largest and potentially
slowest slice, which cannot be further partitioned with the heuristic. AOL×10
is exemplary for this circumstance. As we discussed in Section 2.4, AOL has
roughly 80 percent of its records within the length range 1 to 4. n values higher
than 4 are not beneficial for this dataset. Other datasets show different length
distributions, which lead to optimal n values higher than 4.

KOSA×10 also shows a limited scalability for θ = 0.6, but for a different
reason than length skew. We observe that amongst all slices for each n there
exists one slice with a runtime between 130 and 150 seconds, while all other
slices have lower runtimes. The reason for the outlier slices in KOSA×10 are
their high number of candidates compared to all other slices. The runtimes of
KOSA×10 show a limitation of our heuristic. It optimizes the runtime based on
length information and is thus not robust against candidate skew by design.

3.2 Impact of Data-independent Scaling Mechanism

In this experiment, we study how the scaling parameter m influences the run-
times. We continue to use the datasets using scaling factor 10 and fix parameter
n to 8, since this parameter setting showed good runtimes in the previous ex-
periment. We again use θ ∈ {0.6, 0.75, 0.9} and vary m ∈ {2, 4, 8}. The results
indicate that m ≥ 2 is beneficial to achieve a lower runtime for all datasets and
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Fig. 6. Maximum runtimes for exemplary datasets over all slices for n = 8, θ ∈
{0.6, 0.75, 0.9}, m ∈ {2, 4, 8}. m = 1 indicates runtimes without the scaling mecha-
nism.

thresholds, including AOL×10 and KOSA×10, which showed scalability bound-
aries for n ≥ 4 in the previous experiment (cf. Figure 6).

Since the modulo function evenly distributes different probe lengths among
sub slices we expect the runtimes to scale linearly with m, which experimen-
tal results partially confirm. Regarding the minimum, maximum, and average
speedups for m ∈ {2, 4, 8} in relation to m = 1, grouped by θ, there is a max-
imum speedup close to the optimum m for each threshold group. The averages
over all thresholds for m = 2 are close to the optimum 2. The average speedups
for larger values for m decrease.

3.3 Impact of Dataset Size

In this subsection, we investigate how the runtimes evolve when increasing the
dataset size by scaling factors s ∈ {10, 25, 50, 100}. We statically set n = 8 and
m = 64. We compare the maximum runtimes per slice for s ∈ {25, 50, 100}
relative to maximum runtime for s = 10.

In many cases, the runtime does not increase linearly with the dataset size.
A non-linear runtime increase is expected, because the SSJ has a quadratic
complexity. A perfectly linear runtime relative to s = 10 would be s

10 for s ∈
{25, 50, 100}. Only few combinations of datasets, θ, and s fall in this category. For
ENRO and θ = 0.9, ORKU and θ = 0.9, and SPOT (all thresholds) the relative
runtimes for s ∈ {25, 50, 100} are better than linear. ENRO and θ = 0.75, FLIC
and θ ∈ {0.75, 0.9}, LIVE and θ = 0.9, ZIPF and θ ∈ {0.75, 0.9} are close
to linear. We can observe that the runtimes of higher thresholds increase more
linearly than the ones of lower thresholds relative to s. This runtime behavior
can be explained by the prefix filter, which is more effective for higher thresholds.

With our approach, it is possible to compute the SSJ on all datasets of all
sizes in our evaluation and all thresholds except ENRO-100 and θ = 0.6. We
manually stopped the computation after 12 hours. In Section 2.3, we discussed
that for ORKU×100 the parameter combination n = 8 and m = 64 is not
optimal, because it causes swapping. We next discuss our proposed parameter
finding strategy.
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3.4 Discussion of Parameter Finding Strategy

The previous experiment on enlarged datasets highlights that the manually as-
signed parameters m = 64 and n = 8 are not suitable for ORKU×100 and
θ = 0.6, because the runtime exceeds 12 hours. In Section 2.3, we discussed
the same example and concluded that swapping occurs. When we apply the
parameter strategy from Section 2.5 to the equal number of total nodes as be-
fore (t = 8 · 64 = 512), it suggests m = 32 and n = 16. The runtime of this
parameter combination is 1314 seconds, so the strategy avoids the worst case.
We furthermore expect the strategy to choose the parameter combination with
the smallest cost deviation. In the example in Section 2.4, we discussed that for
AOL×10 θ = 0.6 n = 4 is better than a larger n. Running the parameter finding
strategy for t = 16, it indeed suggests the parameter value n = 4.

4 Conclusion

In this paper we introduced our novel distributed SSJ approach. We showed
experimentally that it scales the computation to potentially hundreds of compute
nodes if needed. Our method computes the SSJ on our hardware on datasets
up to roughly 240 GB, which is much larger than the ones which could be
computed with existing parallel methods so far. We discussed how to a priori
estimate limits of parameter values from which we cannot expect an efficient
execution, especially regarding main memory usage. We proposed a parameter
finding strategy, which avoids poor parameter values leading to either RAM
overutilization or a skewed cost distribution. One remaining challenge is to better
estimate or manipulate the maximum number of candidates of each slice, which
occur at one instance of time.
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