
Organizing Similarity Spaces using Metric Hulls?

Miriama Jánošová1, David Procházka1, and Vlastislav Dohnal1

Faculty of Informatics, Masaryk University, Brno, Czech Republic
{x424615,xprocha6,dohnal}@fi.muni.cz

Abstract. A novel concept of a metric hull has recently been intro-
duced to encompass a set of objects by a few selected border objects.
Following one of the metric-hull computation methods that generate a
hierarchy of metric hulls, we introduce a metric index structure for un-
structured and complex data, a Metric Hull Tree (MH-tree). We propose
a construction of MH-tree by a bulk-loading procedure and outline an
insert operation. With respect to the design of the tree, we provide an
implementation of an approximate kNN search operation. Finally, we
utilized the Profimedia dataset to evaluate various building and ranking
strategies of MH-tree and compared the results with M-tree.

Keywords: metric-hull tree · metric hull · index structure · nearest-
neighbor query · similarity search

1 Introduction

Content-based retrieval systems have become often applied to complement tra-
ditional retrieval systems. Such systems allow processing complex data, such
as photos, medical images, protein sequences or audio recordings, and support
similarity queries. Such search requests compare data items based on the simi-
larity of their content or descriptors extracted from the content rather than the
identity of data. The challenge is managing the ever-growing complex data effi-
ciently and evaluating the similarity queries faster than by the sequential scan.
Many indexing structures were proposed ranging from clustering-based ones [7,
22], space-partitioning methods [6, 4] to transformation techniques [1].

Complex data are thus expressed as descriptors capturing important features
from their content, e.g., color histogram, texture, shape [21] or more profound
vectors computed by convolutional networks [10]. Thus, the descriptors are of-
ten high-dimensional spaces1 [18]. The problem of dimensionality curse then
arises [5]. It leads to visiting many data partitions by an index due to frequent
overlaps among them, whereas useful information is contained in a few of them.
So the index must employ further filtering constraints to make query evaluation
efficient [20, 12].

? The publication of this paper and the follow-up research was supported by the
ERDF ”CyberSecurity, CyberCrime and Critical Information Infrastructures Center
of Excellence” (No.CZ.02.1.01/0.0/0.0/16 019/0000822).

1 Or even distance spaces where no implicit coordinate system is defined.

2 M. Jánošová et al.

A novel concept of metric hulls has been introduced recently [2]. The purpose
of the metric hull is to embrace a set of metric objects. The metric hull is defined
as a set of objects selected out of the set to encompass. We build upon this
concept to create a hierarchical search structure where a metric hull represents
each node. Since the authors also provide a test of whether a metric object is
part of the hull or not, such a structure is viable. We perceive the metric hull as
an alternative to the metric ball used by M-tree [7] or Slim-tree [22]. However, it
bounds data much tighter without any additional information. As a result, node
overlaps can be reduced. The issue of intersecting balls surrounding Voronoi cells
is studied in VD-tree [13].

This paper proposes a metric access method that organizes data in metric
hulls and addresses the issue of large node overlaps without the need for external
pivots, as was applied in Pivoting M-tree [19]. We take advantage of algorithms
to construct metric hulls incrementally [2] to build a hierarchy of metric hulls.
Next, the issue of comparing and ordering metric hulls with respect to a similarity
query is studied here in this paper. We test different variants of such and evaluate
the performance of approximate k-nearest neighbors search.

The remaining parts of the paper are structured as follows. In the next sec-
tion, there is a concise summary of metric space indexing and similarity queries,
and more importantly the concept of metric hulls. Related work of indexing
structures is surveyed in Section 3. The core of this paper is the proposal of
Metric Hull Tree, presented in Section 4. Performance evaluation on a real-life
high-dimensional data is described in Section 5. Contributions of this paper and
possible future extensions are summarized in the last section.

2 Preliminaries

A metric space M is a pairM = (D, d), where D is a domain of objects, and d is
a distance function (metric) d : D×D → R+

0 satisfying metric postulates, namely
non-negativity, the identity of indiscernibles, symmetry, and triangle inequality.
A set of data objects to be queried, so-called database, is denoted as X ⊆ D.

We distinguish two common retrieval operations, specifically, the range query
(range(q, r)) – returning database objects, such that their distance to q is smaller
than the distance r; and the k-nearest neighbors query (kNN(q)) – retrieving k
database objects closest to the query object q; when there are more objects at the
distance of the k-th nearest neighbor, the ties are solved arbitrarily. Nowadays,
approximate evaluation of similarity queries (e.g., approximate kNN(q)) loosens
the restrictions on returning the genuine answer at much lower search costs. Such
evaluation can be implemented by an early termination strategy that stops the
search when a predefined number of data objects are visited. The identification
of the most relevant data parts is thus the center of interest.

A more advanced data processing technique is the Similarity Group By (SGB)
query [11]. It groups data by respecting similarity constraints, e.g., distance
threshold. However, the disadvantage of such queries is that the obtained groups
are mere lists of objects. Thus, there is no compact representation of such groups.

Organizing Similarity Spaces using Metric Hulls 3

Hence, the objective of [2] was to examine properties of objects’ groups’ repre-
sentations, where the hull representation proved to be the most compact.

2.1 Hull Representation

Let C be a group of objects from database C ⊆ X. Formally, the hull repre-
sentation [2] is defined as H(C) = {pi | pi ∈ C} and any other object o ∈ C is
covered by hull. Each pi corresponds to a boundary object of C referred to as
hull object.

LetH be a hull representationH = {p1, . . . , ph} and an object o ∈ D. Assume
pNN to be the nearest hull object of H to o, i.e., NN = argmini=1..h(d(o, pi)).
We say the object o is covered by H if and only if∑

i=1..h,i6=NN

d(pi, o) ≤
∑

i=1..h

d(pi, pNN). (1)

By the original definition, the smallest hull consists of three objects. If |H| < 3,
the hull objects are the only objects covered.

Antol et al. [2] proposed two algorithms for hull computation for a set of ob-
jects C. First, the Basic Hull Algorithm starts with selecting the furthest object
in O and gradually adds additional objects that are furthest objects from the
already selected ones. E.g., the third object has the maximum sum of distances
to the previous two. This procedure terminates when the whole set C is covered
by H. In the worst case, each o ∈ C becomes a hull object. Second, the Op-
timized Hull Algorithm is an improvement to the basic one, which reduces the
number of hull objects. After selecting the initial three hull objects, the proce-
dure is modified: instead of adding the furthest not-yet-covered object of to H,
the algorithm tries to replace some existing hull object with of to increase the
coverage of C. This leads to fewer hull objects without compromising the fact
that each object of C is covered by the resulting H.

3 Existing Metric Access Methods

In this section, we overview existing metric indexes relevant to this work. We
start with structures organizing objects into metric balls. The first disk-oriented
and dynamic structure built in the bottom-up fashion is the M-tree [7]. Data
objects are grouped into leaf nodes that are, in turn, represented by metric balls
(i.e., a routing object and a covering radius). Further levels group metric balls
into larger ones ending with l entries in the root node. The disadvantage is major
overlaps among such ball regions. A slim-down algorithm in Slim-trees [22] has
later optimized such an issue. The tree compactness is measured by the fat factor
there. Additional objects are included in internal nodes to further split balls into
hyperplanes in M+-tree [25] and BM+-tree [26]. Pivoting M-tree [19] selects a
fixed set of pivots that are globally used to define ranges on distances within
which objects reside – spherical cuts. This resembles Linear AESA principle [24],

4 M. Jánošová et al.

which recomputes distances to fixed pivots and stores them in arrays to fast
array-range filtering.

The other methods partition the data space by hyperplanes. GH-tree [23, 3] is
the binary hyper-plane tree that was later generalized to recursive Voronoi tree,
call GNAT [6]. The dynamic version is EGNAT [15], which bulk-loads the tree
and then allows minor updates. Since metric balls provide a simple yet efficient
way of filtering tree branches, they were incorporated into Voronoi diagrams in
NOBH-tree [16]. A common disadvantage of Voronoi-diagram-based indexes is
the difficulty of redefining the partitioning at reasonable costs when the tree
becomes unbalanced. This is tackled in VD-tree [13]. The objects are swapped
between Voronoi cells to reduce overlaps, which is analogous to the slim-down
algorithm [22].

The concept of metric ball regions is widely used and proved advantageous
when combined with Voronoi partitioning or pivot-based filtering (Linear AESA).
This paper exploits the brand new proposal of metric hulls that can bound a
set of objects tightly by outliers. Metric hulls are an alternative to selecting ex-
ternal pivots and consequential definition of constraints on distances for each
individual tree nodes.

4 MH-Tree – the Proposed Method

This section describes the proposed Metric Hull Tree (MH-tree) that represents
data partitions by metric hulls. The hulls are constructed bottom-up by following
the grounds of Incremental Hull Algorithm [9]. Literally, it gradually merges
hulls until only one final hull representation is obtained. However, the original
merging procedure needs to be generalized to support larger arity than two and
any capacity of leaf buckets.

4.1 Structure and Bulk Loading

The MH-tree is a hierarchical tree structure composed of two node types, as
depicted in Figure 1. Each Leaf node encapsulates a bucket – a storage of [c, 2c]
objects. Each leaf node is rooted for an internal node and represented there by
a metric hull. The Internal node manages up to a pairs of a hull representation
(Hi) and a pointer (ptri) to a leaf node. Each hull is constructed by calling the
Optimized Hull Algorithm, see Section 2.1 and [2].

We construct the MH-tree by a bulk-loading procedure. Firstly, we group
the database objects into leaf nodes containing c objects. Secondly, a closest
leaf nodes are merged, thus obtaining a level of internal nodes. This merging
is repeated until one node is obtained, becoming the root of the MH-tree. This
procedure creates a balanced a-ary tree. We present it in pseudo-code in Alg. 1. If
there are too few objects (incapable of forming at least two leaves), we create just
one leaf node that forms the root. In the following, we detail the sub-algorithms.

The database X is clustered by forming compact clusters of c objects. Thus,

b |X|
c c leaf nodes are created. Algorithm 2 presents the pseudo-code of Create-

LeafNodes. The procedure starts with selecting the furthest object of from a

Organizing Similarity Spaces using Metric Hulls 5

Fig. 1: A schema of MH-tree structure.

Algorithm 1: BulkLoad(X, c, a)

Input: a database X, bucket capacity c, arity a
Output: a root node of MH-tree

1 if |X| < 2c then
2 root← create a new leaf node;
3 root.H ← compute Optimized Hull representation of X;
4 root.bucket← X;
5 return root;

6 nodes← CreateLeafNodes(X, c);
7 while |nodes| 6= 1 do
8 nodes← MergeNodes(nodes, a);

9 root← nodes[0];
10 return root;

random object in X (Lines 7-8), a new cluster’s nucleus. The second object in
the cluster is the nearest neighbor of of . To add the next object, we execute 1NN
queries for each object already assigned to the cluster and choose the neighbor
that minimizes the sum of distances to objects already in the cluster. This is
repeated until the cluster contains c objects (Lines 9-12). The next cluster is
formed by analogy but omitting the already clustered objects. If there are fewer
than c unprocessed objects, they get assigned to closest clusters directly, i.e.,
some clusters can contain more than c objects. Finally, the leaf nodes storing
the clusters’ objects in buckets are returned.

The motivation of Alg. 2 is to create compact clusters of up to 2c objects also
for data with outliers and/or overlapping clusters. Here, agglomerative clustering
linking closest objects/clusters would create much more overlaps among hulls.
In particular, whenever a cluster exceeds c objects, it is taken out and forms
a leaf node. Consequently, the remaining objects would very likely be outliers.
They would group to a hull that would span over all the other nodes.

The next bulk-loading stage is merging leaf nodes to create a balanced struc-
ture of internal nodes. It is specified in Alg. 3. By analogy we start with the
furthest leaf node (nf) and execute the aNN(nf) query to get a cluster of a near

6 M. Jánošová et al.

Algorithm 2: CreateLeafNodes(X, c)

Input: a database X, bucket capacity c
Output: a set of leaf nodes

1 leafNodes ← ∅;
2 while X 6= ∅ do
3 if |X| < c then
4 foreach o ∈ X do
5 add o to the closest node in leafNodes;

6 break

7 of ← the furthest object in X for a randomly picked object from X;
8 X ← X \ of ; cluster ← { of };
9 while |cluster| < c do

10 NNs← { on | ∃oc ∈ cluster : on ∈ 1NN(oc) };
11 o← argmin

on∈NNs

∑
oc∈cluster

d(on, oc);

12 X ← X \ o; cluster ← cluster ∪ { o };
13 leaf ← create a new leaf node;
14 leaf .bucket← cluster;
15 leafNodes ← leafNodes ∪ { leaf };
16 return leafNodes;

leaf nodes, nf inclusively. These nodes form an internal node for the next tree
level. We repeat this procedure until all nodes are processed. The identification
of furthest and close nodes is based on a comparison of nodes’ hulls. We consider
the distance between hulls H1 and H2 to be defined as:

d(H1,H2) = min
∀h1∈H1,∀h2∈H2

d(h1, h2). (2)

So, the furthest node is thus the node whose hull is furthest from the hull of a
randomly picked node (out of not-yet-processed ones). The outcome of Alg. 3 is
a list of nodes constituting the next level of MH-tree. We apply it until only one
node is returned – the root node.

To create the hull representations we utilize the Optimized Hull Algorithm
(called from Algorithm 3). When merging leaf nodes, the Optimized Hull Algo-
rithm is invoked on the objects of the leaf node’s bucket to obtain a hull. In this
course, we would collect all objects from the previously merged nodes to create
a hull. But the computational requirements would grow steeply then. Instead, in
the next generations we gather the hull objects from all hulls in the internal node
and compute the new hull on them solely. This practice introduces imprecision
of hulls – some objects stored in the sub-tree may not be covered. We address
this issue on the kNN search algorithm.

Organizing Similarity Spaces using Metric Hulls 7

Algorithm 3: MergeNodes(N , a)

Input: a set of nodes N (at the same level of the tree), arity a
Output: a set of internal nodes of the upper level

1 level ← ∅; notProc← N ;
2 while notProc 6= ∅ do
3 if |notProc| ≤ a then
4 create a new internal node nNode;
5 foreach node ∈ notProc do
6 H ← call Optimized Hull Algo on node;
7 ptr ← pointer to node;
8 nNode.HullChildPairs← nNode.HullChildPairs ∪ { (H, ptr) };
9 level ← level ∪ {nNode };

10 break

11 nf ← extract the furthest node from notProc;
12 C ← execute (a− 1)NN(nf) query on notProc;
13 notProc← notProc \ C;
14 create a new internal node nextNode;
15 foreach node ∈ C ∪ {nf } do
16 H ← call Optimized Hull Algo on node;
17 ptr ← pointer to node;
18 nextNode.HullChildPairs← nextNode.HullChildPairs∪{ (H, ptr) };
19 level ← level ∪ {nextNode };
20 return level ;

4.2 Searching in the MH Tree

We outline the kNN search algorithm in Alg. 4. We assume a limit on the num-
ber of visited data objects is passed, so the Stop function can terminate the
search early. Such limitation together with the imprecisions introduced during
the building procedure result in acquiring an approximate result. The algorithm
starts from the root node and maintains a queue of nodes to be inspected. This
queue is ordered by the “likelihood” of the node to contain relevant data. It can
be defined as a lower bound or upper bound distance for the query object q to
the nearest/furthest object in a node’s hull H. We define it using the hull objects
exclusively, so the lower and upper bound are defined as

dl(q,H) = min
∀h∈H

d(q, h); (3)

du(q,H) = max
∀h∈H

d(q, h). (4)

The actual definition of Rank function is investigated in the experiments in
Section 5.

The exact evaluation of the kNN query can be obtained by setting the ap-
proximate limit to 100%. Even though this being a straightforward solution, it
leads to scanning the whole database. Rather, the check comparing the distance

8 M. Jánošová et al.

Algorithm 4: ApproximateKNNSearch(q, k, Rank, limit)

Input: a query object q, number of nearest neighbors k, rank function Rank,
approximation parameter limit

Output: a set of nearest neighbors found
1 answer ← ∅; // ordered set by objects’ distances from q
2 PQ← create a priority queue with the priority determined by Rank;
3 insert the root node into PQ with zero priority;
4 while PQ is not empty do
5 // early termination after a certain percentage of visited objects
6 if Stop(limit) then
7 break

8 node← extract the node with highest priority from PQ;
9 if node is a leaf node then

10 foreach o ∈ node.bucket do
11 if |answer| < k then
12 add o into answer;
13 continue;

14 ok ← the kth object from query object q in answer;
15 if d(q, o) < d(q, ok) then
16 insert o in answer and remove ok from answer;

17 else
18 foreach pair ∈ node.HullChildPairs do
19 insert pair.ptr into PQ with the priority rank(q, pair.H, k);

20 return answer;

to the kth nearest-neighbor candidate and the distance to the hull of PQ’s head
element must be defined. Since the current bulk-loading algorithm does ensure
coverage such a test may not be ensuring result correctness. Our primary aim
in this paper is to show the viability of the application of metric hulls to index-
ing, and we do not study the exact evaluation. A promising direction to define
a more efficient exact-search algorithm is presented in [8]. The author exploits
transformation of a metric space by multiple pivots, and defines a constraint on
distance of an object in such a pivot space.

4.3 Dynamicity

After bulk-loading the MH-tree, we can insert new objects to corresponding leaf
nodes. Firstly, we locate the most suitable leaf Nbl by executing kNN search
algorithm with the newly inserted object as the query object (Alg. 4). When a
leaf node is extracted from the search queue (Line 8), we stop the search and
insert the new object o into the leaf node’s bucket. Next, if o is not covered
by the node’s hull H = {h1, . . . , hl}, it is updated with linear costs: ∀i, try to
replace hi with o and test whether hi is covered by such updated hull. If so, this

Organizing Similarity Spaces using Metric Hulls 9

hull is stored in the leaf’s parent. Otherwise, o is added as a new hull object, i.e.,
the new hull H ∪ {o} is stored. The hulls of parent nodes need not be updated,
since the closeness of hulls to an object is addressed in the tree traversal (by the
Rank function).

If the capacity of the leaf Nbl is double exceeded, we split the leaf into two
new nodes N1 and N2 by these steps: (i) we identify an outlier in Nbl’s bucket
(the furthest object from a random one), and halve the bucket’s objects (incl. o)
according to the distance from the outlier – c + 1 objects closest to the outlier
from the bucket of N1 and the remaining objects are stored in the bucket of N2.
The new nodes are linked to Nbl’s parent if there is room for them. Otherwise,
a new internal node is created and roots the new leaf nodes. So, the MH-tree
becomes unbalanced then. If the structure becomes highly unbalanced, it should
be rebuilt from scratch.

5 Experimental Evaluation

This section provides an experimental study of the proposed Metric Hull Tree
and compares its performance with M-tree with Slim-down.

We used the Profimedia [14] dataset in the experiments. It consists of a
series of 4096-dimensional vectors extracted from Photo-stock images using a
convolutional neural network. To measure the similarity between the data, we
utilize the Euclidean distance. Our experiments were executed upon two sizes of
Profimedia dataset – 10,000 and 100,000 objects.

To compare the performance, we execute kNN queries and measure the ac-
quired recall. Specifically, we employ the approximate kNN search with an early
termination strategy of visiting a certain percentage of database objects. The
evaluation starts with the approximation parameter set to 5%, continued by a
gradual increase of it in five percentage-point steps up to 100%. To quantify the
trade-off between the accuracy and the efficiency of the approximate search, we

compute recall = |S∩Sa|
S , where the set S corresponds to the result of (precise)

kNN query and set Sa to the result of approximate kNN query.
The pivotal part of effective search in MH-tree is the selection of the ranking

function in priority queues. Naturally, we exploit just hull objects to define the
ranking function. In the following sections, we study the influence of various
ranking functions on recall in a shallow tree configuration, where we examine
the ranking of the leaf nodes solely, and in deep tree configuration, where we
take into consideration the ranking of both internal and leaf nodes. Lastly, we
compare the best definition of ranking function in MH-tree with M-tree.

5.1 Ordering Leaf Nodes

We analyse the way of ordering leaf nodes by comparing their hulls to an object,
e.g., a query object. The most encouraging way uses the distance from the query
object to the nearest hull object. Formally, the rank of a leaf node is defined as
follows

10 M. Jánošová et al.

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100
Visited objs(%)

MH−Tree M−Tree
Leaf Rank − 1NN

(a)

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100
Visited objs(%)

MH−Tree M−Tree
Leaf Rank − 50NN

(b)

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100
Visited objs(%)

MH−Tree M−Tree
Internal Rank − 1NN

(c)

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100
Visited objs(%)

MH−Tree M−Tree
Internal Rank − 50NN

(d)

Fig. 2: Average recall of MH-tree and M-tree for 1NN and 50NN queries: (a,b)
ranking leaf nodes in shallow structures, and (c,d) final ranking of both types of
nodes in hierarchical structures. All results are on 10,000 Profimedia images.

rankLEAF (q,H) = min
∀h∈H

d(q, h). (5)

To determine the efficiency of the rankLEAF function, we evaluate the shallow
configurations of MH-tree as well as M-tree, i.e., the root node referencing all
leaf nodes. In Figure 2 ((a) and (b)), we provide the comparison for 1NN and
50NN queries varying the approximation limit. Regarding the 1NN query (Fig-
ure 2a), the MH-tree surpasses the performance of the M-tree in the first 50% of
visited objects. After that, the M-tree manages to gather faster growth of recall.
However, the performance of both approaches is more or less the same.

On the contrary, the average recall of the 50NN query (Figure 2b) reveals
a much better performance of the MH-tree. It reaches 80% recall while visiting
20% of the database only. The M-tree manifests almost linear growth.

We also tested another variant of leaf-node ranking functions, e.g., the dis-
tance to the furthest hull object and average distance to all hull objects, but
this nearest variant performed the best. All results are available in the bache-
lor’s thesis [17].

5.2 Ordering Internal Nodes

To efficiently traverse also deep MH-tree structures, i.e., the multi-level ones, we
need to determine the best-ranking strategy with respect to both leaf and inter-
nal nodes. Firstly, we examined ordering based solely on the distance between
the query and the node without taking into consideration whether or not the
query is covered by the node’s hull representation. Such ranking roughly corre-
sponds to RankLEAF . However, we experienced only a linear growth of recall to
the number of visited nodes for the 50NN query. Thus, to improve navigation,
the rank used in the priority queue needs to be more sophisticated.

Organizing Similarity Spaces using Metric Hulls 11

Table 1: The definition of the most efficient rank function rank(q,H, k).

Conditions Value

Node type k covered rank(q,H, k)

Internal

1
YES −max∀h∈H d(q, h)

NO max∀h∈H d(q, h)

> 1
YES −min∀h∈H d(q, h)

NO min∀h∈H d(q, h)

Leaf min∀h∈H d(q, h)

The rank(q,H, k) function, defined in Table 1, computes the rank depend-
ing on whether or not the query object is covered by the hull and also on the
number of neighbors k to be retrieved. We included the ranking of leaves there
for completeness. For 1NN queries, it is more convenient to prefer hulls that
are closer overall, so the furthest hull object is used. Whereas the nearest one
is the best performing for any k > 1, since we do not know how many objects
are present there in advance. Notably, the covered condition provides a better
ordering of hulls that contain the query object, so hulls with q more to its center
are preferred. More details are in the bachelor’s thesis [17].

Figure 2c presents the average recall of the MH-tree and M-tree in the 1NN
query. Notice that the recall has almost doubled per the same amount of vis-
ited nodes compared to Figure 2a. Therefore, the rank is able to reflect the
performance of rankLEAF while proving that it is also able to navigate the
tree effectively.We observe similar behavior when comparing Figs. 2d and 2b
on 50NN queries. The MH-tree achieves significantly better recall than M-tree.
The difference in MH-tree’s performance on 50NN when being shallow or deep
is marginal, proving the node navigation by the rank function is robust.

5.3 Comparison

We compare the MH-tree with M-tree on 100,000 objects from Profimedia. The
M-tree was built with the slim-down algorithm [22] to make it as efficient and
compact as possible. To validate the quality and performance of the structures,
we set the structure parameters to obtain similar trees. They are summarized in
Table 2. We report the values of fat-factor [22] that quantifies overlaps of covering
regions representing tree nodes. The fat factor is a relative quantity computed
as an average performance of zero-radius range queries for each database object.
If the search for an object visits exactly one node per level, the fat factor is zero.
In the worst case, all tree nodes are visited. The fat factor then grades the tree
with one.

12 M. Jánošová et al.

Table 2: Features of MH-tree and M-tree build on 100,000 Profimedia images.
Params Building statistics

Arity Leaf Height Internal Leaf routing Fat Building
cap. nodes nodes objects factor time (s)

MH-tree 100 100 2 11 1000 3262 0.03 1548
M-tree 100 200 3 51 2546 2596 0.56 67

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100
Visited objs(%)

MH−Tree M−Tree
1NN

(a)

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100
Visited objs(%)

MH−Tree M−Tree
50NN

(b)

0.2

0.3

0.4

0.5

0.6

1 2 5 10 20 50 100
k

MH−Tree M−Tree
10% Visited objs

(c)

0.4

0.5

0.6

0.7

0.8

1 2 5 10 20 50 100
k

MH−Tree M−Tree
20% Visited objs

(d)

Fig. 3: Average recall of MH-tree and M-tree in 1NN and 50NN queries in Deep
tree structure (a),(b). Average recall of MH-tree, M-tree for varying k in the
kNN queries (c),(d). All results are on 100,000 Profimedia images.

In Figs. 3a and 3b, we summarize the average recall of MH-tree compared to
M-tree in 1NN and 50NN queries. The recall of MH-tree rises much steeper than
M-tree’s up to visiting 15% of the database. For example, MH-tree provides 88%
recall for 50NN queries compared to 29% of M-tree. Figures 3c and 3d showcase
the details on performance of various kNN queries when approximation is fixed
to 10% and 20% of dataset. The recall of M-tree deteriorates with increasing k.
MH-tree’s recall is more steady. The results manifest that the MH-tree is able
to outperform the M-tree even on large datasets significantly.

The negative point is the construction costs that are quite high and can only
be amortized when managing mostly static data. We did not focus on optimizing
the building routine, but the concept of hulls can eliminate node overlaps to a
large extent.

6 Conclusions

MH-tree is an index structure build upon the novel concept of metric hulls.
We proposed algorithms for building a hierarchy of metric hulls that organizes
data objects into leaf nodes, which are gradually merged into internal nodes
constrained by metric hulls. In addition to such a bulk-loading procedure, we
outlined the dynamic insertion of new objects. The fat factor of MH-tree is by
one order of magnitude smaller than of M-tree with slimming-down. This proves

Organizing Similarity Spaces using Metric Hulls 13

the compactness of metric hull representation. Admittedly, this can also be ac-
counted to the building process of MH-tree that groups close objects primarily.

We proposed and analysed a node-ranking function that orders nodes by their
closeness to a query object. The bases of leaf and internal nodes’ ranking differ
– the distance to the closest hull object is taken as the measure for leaf nodes.
In contrast, the distance to the furthest hull object is the means for internal
nodes. We also showed that coverage of the query object by a hull needs to be
employed in order to navigate deeper tree structures effectively. In addition, we
achieved the highest recall when distinguishing between retrieval of one neighbor
and multiple nearest neighbors.

Finally, we compared the best-performing setup of MH-tree with the M-tree
built by the slim-down algorithm. The results showcase that MH-tree outper-
forms M-tree significantly – fewer nodes are visited for the same recall or vise
versa. Specifically, the performance of MH-tree was higher by 20-30% on average
compared to M-tree per the same amount of visited objects on smaller datasets.
The differences were even more pronounced on larger data, 30-40% higher aver-
age recall of MH-tree depending on the number of extracted neighbors.

The future work would focus on generating representations with more hull
objects, thus keeping the hulls even more compact. This could result in a sig-
nificant improvement in approximate search. In addition, formulating mature
ranking strategies could lead to a finer-grained tree traversal. Lastly, we will
compare MH-tree with techniques using external pivots, e.g., Pivoting M-tree.

References

1. Amato, G., Gennaro, C., Savino, P.: MI-File: Using inverted files for scal-
able approximate similarity search. Multimedia Tools and Applications (2014).
https://doi.org/10.1007/s11042-012-1271-1

2. Antol, M., Janosova, M., Dohnal, V.: Metric hull as similarity-aware operator for
representing unstructured data. Pattern Recognition Letters, Available online on
June 12, 2021 pp. 1–8 (2021). https://doi.org/10.1016/j.patrec.2021.05.011

3. Batko, M.: Distributed and scalable similarity searching in metric spaces. In: Cur-
rent Trends in Database Technology - EDBT 2004 Workshops. pp. 44–53. Springer
Berlin Heidelberg, Berlin, Heidelberg (2005)

4. Batko, M., Dohnal, V., Zezula, P.: M-grid: Similarity searching in grid. In: P2PIR
2006: International Workshop on Information Retrieval in Peer-to-Peer Networks
(2006). https://doi.org/10.1145/1183579.1183583

5. Böhm, C., Berchtold, S., Keim, D.A.: Searching in high-dimensional spaces: Index
structures for improving the performance of multimedia databases. ACM Comput.
Surv. 33(3), 322–373 (Sep 2001). https://doi.org/10.1145/502807.502809

6. Brin, S.: Near Neighbor Search in Large Metric Spaces. Proceedings of the Inter-
national Conference on Very Large Data Bases (1995)

7. Ciaccia, P., Patella, M., Zezula, P.: M-tree: An efficient access method for similarity
search in metric spaces. In: Proceedings of the 23rd International Conference on
Very Large Data Bases (VLDB). pp. 426–435. Morgan Kaufmann (1997)

8. Hetland, M.L.: Comparison-based indexing from first principles. arXiv preprint
arXiv:1908.06318 (2019)

14 M. Jánošová et al.

9. Jánošová, M.: Representing Sets of Unstructured Data. Master thesis, Masaryk
University, Faculty of Informatics (2020), https://is.muni.cz/th/vqton/

10. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with
deep convolutional neural networks. Communications of the ACM (2017).
https://doi.org/10.1145/3065386

11. Laverde, N.A., Cazzolato, M.T., Traina, A.J., Traina, C.: Semantic similarity group
by operators for metric data. In: International Conference on Similarity Search and
Applications. pp. 247–261. Springer (2017)

12. Mic, V., Novak, D., Zezula, P.: Binary sketches for secondary filtering. ACM Trans.
Inf. Syst. 37(1), 1:1–1:28 (2019). https://doi.org/10.1145/3231936

13. Moriyama, A., Rodrigues, L.S., Scabora, L.C., Cazzolato, M.T., Traina, A.J.M.,
Traina, C.: VD-Tree: How to build an efficient and fit metric access method using
voronoi diagrams. In: Proceedings of the 36th Annual ACM Symposium on Applied
Computing (SAC). p. 327–335. ACM, New York, NY, USA (2021)

14. Novak, D., Batko, M., Zezula, P.: Large-scale image retrieval using neural net
descriptors. In: Proceedings of the 38th International ACM SIGIR Conference on
Research and Development in Information Retrieval. pp. 1039–1040. ACM (2015)

15. Paredes, R.U., Navarro, G.: EGNAT: A fully dynamic metric access method for
secondary memory. In: 2nd International Workshop on Similarity Search and Ap-
plications, SISAP 2009 (2009). https://doi.org/10.1109/SISAP.2009.20

16. Pola, I.R.V., Traina, C., Traina, A.J.M.: The NOBH-tree: Improv-
ing in-memory metric access methods by using metric hyperplanes
with non-overlapping nodes. Data and Knowledge Engineering (2014).
https://doi.org/10.1016/j.datak.2014.09.001

17. Procházka, D.: Indexing structure based on metric hulls. Bachelor thesis, Masaryk
University, Faculty of Informatics (2021), https://is.muni.cz/th/jk21s/

18. Samet, H.: Foundations of Multidimensional And Metric Data Structures. The
Morgan Kaufmann Series in Data Management Systems, Morgan Kaufmann (2006)

19. Skopal, T., Pokorný, J., Snasel, V.: PM-tree: Pivoting Metric Tree for Similarity
Search in Multimedia Databases. ADBIS, Computer and Automation Research
Institute Hungarian Academy of Science (2004)

20. Skopal, T., Pokorný, J., Snášel, V.: Nearest neighbours search using the PM-Tree.
In: Proceedings of the 10th International Conference on Database Systems for
Advanced Applications (DASFAA 2005), Beijing, China, April 17-20, 2005. Lecture
Notes in Computer Science, vol. 3453, pp. 803–815. Springer (2005)

21. Smith, J.R.: MPEG7 Standard for Multimedia Databases. SIGMOD Record
(2001). https://doi.org/10.1145/376284.375814

22. Traina, C., Traina, A., Faloutsos, C., Seeger, B.: Fast indexing and visualization
of metric data sets using Slim-trees. IEEE Transactions on Knowledge and Data
Engineering (2002). https://doi.org/10.1109/69.991715

23. Uhlmann, J.K.: Satisfying general proximity/similarity queries with metric trees.
Information Processing Letters 40(4), 175–179 (1991)

24. Vilar, J.M.: Reducing the overhead of the AESA metric-space nearest neighbour
searching algorithm. Information Processing Letters 56(5), 265–271 (1995)

25. Zhou, X., Wang, G., Yu, J.X., Yu, G.: M+-tree: a new dynamical multidimen-
sional index for metric spaces. In: Proceedings of the 14th Australasian Database
Conference. pp. 161–168 (2003)

26. Zhou, X., Wang, G., Zhou, X., Yu, G.: BM+-tree: A hyperplane-based index
method for high-dimensional metric spaces. In: Lecture Notes in Computer Sci-
ence. pp. 398–409 (2005). https://doi.org/10.1007/11408079 36

