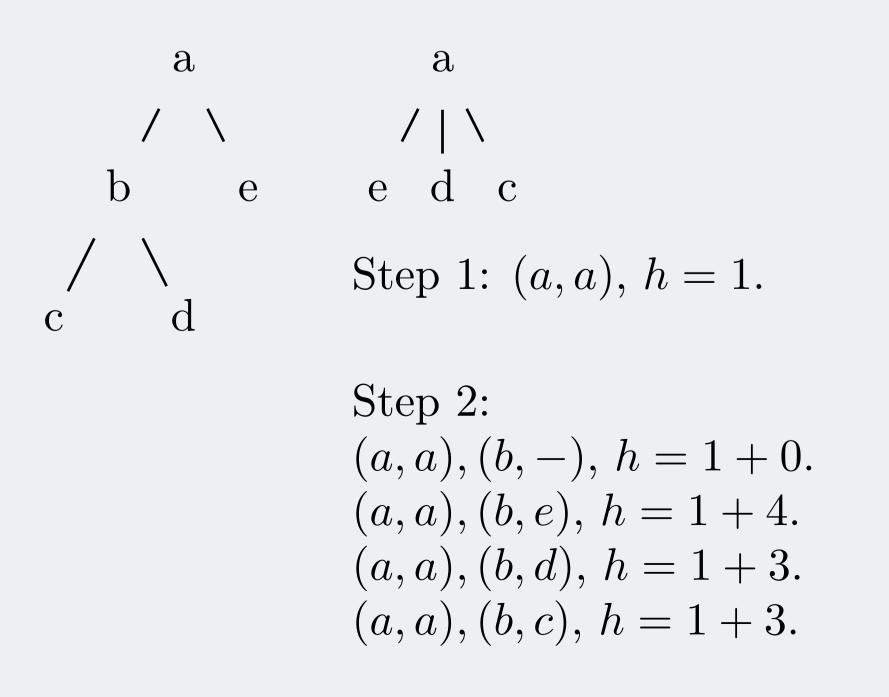
An A*-algorithm for the Unordered Tree Edit Distance with Custom Costs

Benjamin Paassen https://gitlab.com/bpaassen/uted

Motivation


The unordered tree edit distance is an intuitive metric for unordered trees (e.g. chemical molecules). While it is MAX-SNP-hard [4], it can be computed efficiently via an A* algorithm for small examples [3].

Our contribution: A* algorithm that is compatible with *custom costs*.

A* algorithm

1. Start by mapping root to root. Compute lower bound h and put on priority queue Q. 2. Poll best lower bound from Q. Consider all possible extensions, compute lower bounds, and put on Q.

3. If mapping is complete, stop.

sets. rithm.

 h_1 : only deletions.

 $\mathcal{O}($

Datasets: Alkanes: 150 alkane molecules with boiling points by [1]. Custom cost: hydrogen count. **ZINC:** 100 smallest molecules with chemical stabilities by [2]. Custom cost: electron count.

Baselines: Linear-time lower bound by Yoshino [3] for runtime; constrained UTED and ordered TED for regression.

Three novel lower bounds

Main idea: Treat remaining trees as unordered

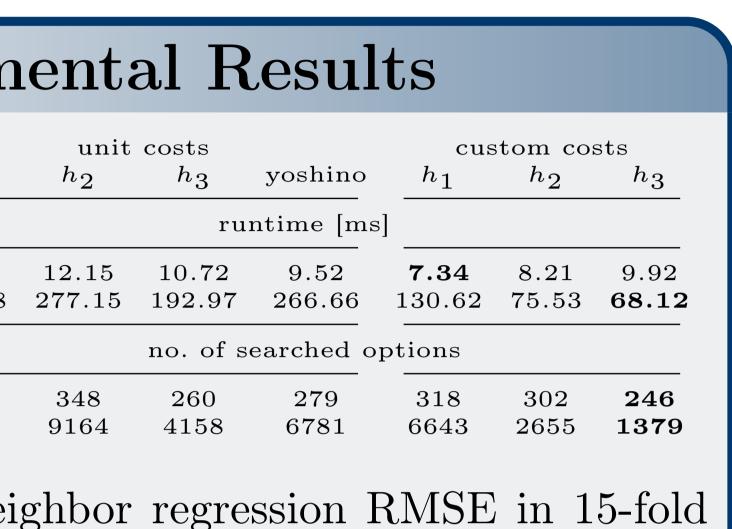
 h_3 : optimal assignment via Hungarian algo-

 h_2 : best matching partner for each node; deletion of least matching.

$h_3 = 3$	$h_2 = 2$	$h_{1} = 1$		
$(m+n)^3$	$\mathcal{O}(m \cdot n)$	$\mathcal{O}(\max\{m,n\})$		
a e	a e	a e		
a Xd	a d	a d		
o a	b a	b a		
C	Ø	Ø		

It holds: $h_1 \leq h_2 \leq h_3 \leq \text{actual edit distance.}$

Experimental Setup


Expe	rin
data set	h_1
alkanes ZINC	8.70 549.38
alkanes ZINC	$\frac{376}{24586}$
5-neares crossval	
data s ——— alkan ZINO	es 0

References:

- In Proc. ICML, 2017.
- 140, 2013.

Acknowledgements: Funding by the German Research Foundation (DFG) under grant number PA 3460/2-1is gratefully acknowledged.

lon:

unit costs			custom costs			
TED	CUTED	TED	UTED	CUTED	TED	
0.27 0.33	$\begin{array}{c} 0.27 \\ 1.31 \end{array}$	$\begin{array}{c} 0.27 \\ 1.36 \end{array}$	$0.25\\1.24$	0.25 1.26	0.25 1.29	

[1] Claudio Gallicchio and Alessio Micheli. Tree echo state networks. Neurocomputing, 101:319 - 337, 2013.

[2] Matt J. Kusner, Brooks Paige, and José Miguel Hernández-Lobato. Grammar variational autoencoder.

[3] Takuya Yoshino, Shoichi Higuchi, and Kouichi Hirata. A dynamic programming A^* algorithm for computing unordered tree edit distance. In Proc. IIAI, pages 135-

[4] Kaizhong Zhang and Tao Jiang. Some MAX SNP-hard results concerning unordered labeled trees. Information Processing Letters, 49(5):249-254, 1994.