
Scaling Up Similarity Joins Using A
Cost-Based Distributed-Parallel Framework

Fabian Fier and Johann-Christoph Freytag

Key Contributions
Ÿ A cost-based heuristic and further mechanisms to break 

down the Set Similarity Join (SSJ) into independent slices,
Ÿ a RAM usage estimation to avoid swapping,
Ÿ high scalability to hundreds of GB of input data.

Set Similarity Join
Ÿ Input. Given a collection of sets R formed over the universe U of 

tokens (set elements), and a similarity function between two sets, 
sim : P(U) × P(U) -> [0, 1].

Ÿ Output. The SSJ computes all pairs of sets (s, r) ∈ R ×R whose 
similarity exceeds a user-defined threshold t, 
0 < t < 1, i.e., all pairs (s, r) with sim(s, r) > t.

Distributed Approach: Dataflow

References, Code, Contact
Ÿ Extended paper: Fier, F., Freytag, J.C.: Scaling up set similarity joins using a cost-based distributed-parallel framework [extended paper] 

(2021). https://doi.org/10.18452/23209
Ÿ Code: https://github.com/fabiyon/dist-ssj-sisap
Ÿ Contact: fier@informatik.hu-berlin.de

Outlook
Ÿ Additionally consider GPU,
Ÿ machine learning for candidate estimation,
Ÿ adaption to Big Data systems.

Cost-based heuristic
Ÿ Avoid recomputation: only matching lengths,
Ÿ divide join computation into independent slices
Ÿ estimate compute costs per slice using length statistics,
Ÿ assign slices to n groups such that costs are distributed evenly 

(greedy heuristic).

Example for n=2:

Example join matrix of matching lengths.

Experiments and discussion

Ÿ Limitations (by design): length and candidate skew.
Ÿ We provide further means to partition the slices, to prevent 

swapping, and to find suitable parameter values.

n

M
a

x 
ru

n
tim

e
 o

ve
r 

a
ll 

sl
ic

e
s 

(S
)

Example runtime effect of cost-based heuristic.


