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Abstract

It is well known that recall rather than precision is
the performance measure to optimize in imbalanced
classification problems, yet most existing methods
that adjust for class imbalance do not particularly
address the optimization of recall. Here we propose
an elegant and straightforward variation of the
k-nearest neighbor classifier to balance imbalanced
classification problems internally in a probabilistic
interpretation and show how this relates to the
optimization of the recall. We evaluate this novel
method against popular k-nearest neighbor-based
class imbalance handling algorithms and compare
them to general oversampling and undersampling
techniques. We demonstrate that the performance
of the proposed method is on par with SMOTE yet
our method is much simpler and outperforms
several competitors over a large selection of
real-world and synthetic datasets and parameter
choices while having the same complexity as the
regular k-nearest neighbor classifier.

Quality Measures

The precision measure reports, for one class
against all other classes TP

FP+TP . In class
imbalanced problems, precision is not a viable
measure since the majority classes will have
relatively few false positives no matter how many of
the minority points they predict as majority points.
Examples for the minority classes on the other
hand are rarely mistaken for majority points.
Accuracy and error rate are strongly biased to favor
the majority class. The problem with accuracy and
error rate is obvious when the class imbalances are
extreme. Thus the G-mean score is a popular
measure [1, 2, 3] in imbalanced classification
problems, that is the geometric mean over recall:
(
∏n

i=1 ri)
1
n = n
√
r1 · r2 · . . . · rn, where ri is the recall for

class ci.

Imbalanced Datasets

# Dataset n Dim IR Cl
1 appendicitis 106 7 4.05 2
2 balance 625 4 5.88 3
3 cleveland 297 13 12.31 5
4 coil 2000 9822 85 15.76 2
5 dermatology 358 34 5.55 6
6 ecoli 336 7 71.5 7
7 glass 214 9 8.44 6
8 haberman 306 3 2.78 2
9 hayes roth 160 4 2.10 3
10 hepatitis 80 19 5.15 2
11 marketing 6876 13 2.49 9
12 page-blocks 5472 10 175.46 5
13 phoneme 5404 5 2.41 2
14 satimage 6435 36 2.45 6
15 spectfheart 267 44 3.85 2
16 shuttle 58000 9 4558.60 7
17 thyroid 7200 21 40.16 3
18 titanic 2201 3 2.10 2
19 wine-red 1599 11 68.10 6
20 wine-white 4898 11 439.60 7
21 yeast 1484 8 92.60 10
22 usps 1500 50 4.00 2
23 new thyroid 215 5 5.00 3

kNN-BPP

Theorem: Given some query object x in a
classification problem with a set C of m classes, let
ki be the number of instances among the k nearest
neighbors of x that belong to class ci, let ni be the
number of instances that belong to class ci overall
(i.e., ni = |ci|). For the k nearest neighbor classifier,
adjusting the prior class probabilities such that all
classes are equally likely, i.e., ∀iPr(ci) = 1

m, is
equivalent to choosing argmaxci∈C

(
ki
ni

)
, which is the

local recall for x.
Proof: The proxy for the probability Pr(x|ci) is the
density estimation given by the k nearest neighbors,
conditional on class ci, that we can describe as

Pr(x|ci) ∝
ki

niV (x)
(1)

where V (x) is the volume, centered at x, required to
capture k nearest neighbors of x. We can therefore
rewrite Equation 6 as follows:

Pr(ci|x) ∝
ki

niV (x) · Pr(ci)∑m
j=1

kj
njV (x) · Pr(cj)

(2)

Choosing equal prior class probabilities results in:

Pr(ci|x) ∝
ki

niV (x) ·
1
m∑m

j=1
kj

njV (x) ·
1
m

(3)

which simplifies to

Pr(ci|x) ∝
ki
ni∑m
j=1

kj
nj

(4)

where the denominator is obviously identical for all
classes. We therefore have

argmax
ci∈C

Pr(ci|x) = argmax
ci∈C

(
ki
ni

)
(5)

Average Rank

Performance for k ∈ [3, 35] in terms of the mean rank
over all datasets.
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Figure 1: G-mean score
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Figure 2: Macro averaged recall

Bayes Theorem

Pr(ci|x) =
Pr(x|ci) · Pr(ci)∑m
j=1Pr(x|cj) · Pr(cj)

(6)

Statistical evaluation

We performed a statistical analysis of the ranking
differences for k = 10, 20, 30. The results for 10 and
20 are shown in the critical difference plots. The
plots show the average ranking of methods over all
datasets together with a bar connecting methods
that are not performing differently with statistical
significance. We see our method on top or, in one
case, second to SMOTE, although their
performance is only different with statistical
significance from some other methods in most
cases. The classic, unchanged kNN classifier is
typically worst, and several of the improved
versions are not better with statistical significance.
kNN-BPP is significantly better than the
unchanged kNN classifier in all tests and better
than RUS and CW-kNN in several, also in cases
where SMOTE is not significantly better.
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In summary, the critical difference (CD) plots
indicate that kNN-BPP performs as well or slightly
better than a non-trivial oversampling technique,
but without adding runtime to the original k-nearest
neighbor classifier.

Conclusion

We developed an elegant and straightforward kNN
classifier, kNN-BPP, that balances prior class
probabilities and thus treats imbalanced classes in
a fair manner. The proposed kNN-BPP algorithm
shows performance on par with a popular
oversampler applied to the datasets in combination
with the conventional kNN-algorithm for all
measured k-values, while having the same
computational complexity as regular kNN. The
algorithm’s difference from a weighted
kNN-algorithm is shown in the paper. kNN-BPP’s
advantage over other recent internal modifications
of kNN over a wide set of k-values has been
established.
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