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Motivation and Objectives

Locality-sensitive Hashing (LSH) after a decade of development
@ established theoretical fundamentals

@ LSH functions for several specific data types + distance functions
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Motivation and Objectives

Locality-sensitive Hashing (LSH) after a decade of development
@ established theoretical fundamentals

@ LSH functions for several specific data types + distance functions

Metric Index (M-Index) as an indexing & searching principle
@ hash functions that preserve locality of data

@ based purely on metric properties

Objectives of this work

@ redefinition of M-Index in terms of LSH approach

@ experimental verification of LSH properties of M-Index
@ comparison with established LSH function
°

analysis of LSH properties with respect to kNN search
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LSH Fundamentals

Basic idea:
@ construct a family of locality-sensitive hash functions

e close objects tend to be hashed to the same bucket
o distant objects tend to be hashed to different buckets

@ access objects hashed to the same bucket as query object

@ construct several hash indexes
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LSH Fundamentals

Basic idea:

@ construct a family of locality-sensitive hash functions

e close objects tend to be hashed to the same bucket
o distant objects tend to be hashed to different buckets

@ access objects hashed to the same bucket as query object

@ construct several hash indexes

Definition

A family H of functions h: D — M is called (r1, r2, p1, p2)-sensitive for
d:DxD — Rif forany u,v € D:

o if d(u,v) < n then Py[h(u) = h(v)] > p1,
o if d(u,v) > rp then Py[h(u) = h(v)] < pa.

LSH function family should satisfy inequalities r, < r» and p; > p»
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Collision Probability

Collision probability curve:
@ probability of h(u) = h(v) for u, v € D with respect to distance d(u, v)
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Collision Probability

Collision probability curve:
@ probability of h(u) = h(v) for u, v € D with respect to distance d(u, v)
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LSH Techniques

Concatenation technique:
o family of functions is defined: G= {g : D — MK}
o where g(u) = (hi(u),...,hk(u)), hi e H
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LSH Techniques

Concatenation technique:
o family of functions is defined: G= {g : D — MK}
o where g(u) = (hi(u),...,hk(u)), hi e H

Classic LSH approach is to tune parameters:
@ K — number of concatenated functions/values

@ L — number of hash tables

Multi-probe approach:

@ access more buckets that could contain objects near query g
@ hash keys g(q) that differ by 1 in one or several components:
o (h(g)x1,...,hk(q)£1)
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M-Index Mapping

@ recursive Voronoi-like partitioning using set of pivots po, ..., pn—1
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M-Index Mapping

@ recursive Voronoi-like partitioning using set of pivots pg, ..., Pp—1

@ mapping of object o: cluster identification + distance d(o, p;)
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Dynamic Hashing with M-Index
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o overfull clusters split further (up to a maximum level 1 < /yax < n)

@ mapping (cluster numbering) analogous to extensible hashing
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LSH Indexing & Searching with M-Index

M-Index defines a family of locality-sensitive functions
@ parameters: n, hnax, cluster capacity

@ every instance is identified by a specific set of pivots py, ..., pr—1
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LSH Indexing & Searching with M-Index

M-Index defines a family of locality-sensitive functions
@ parameters: n, hnax, cluster capacity

@ every instance is identified by a specific set of pivots py, ..., pr—1

Approximate search with M-Index is multi-probe

@ always access cluster C, for query kNN(q, k)
@ a given order to access other buckets
e driven by a heuristic
@ accessed clusters form virtual buckets
o query dependent, arbitrary and precisely tunable size
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Evaluation Settings

Two real-life datasets with one million objects
e Color Structure: MPEG-7 descriptor (64-dim vector + L, distance)

e CoPhlIR: five MPEG-7 descriptors (280 dimensions + a complex
aggregation function, intrinsic dimensionality: 13)
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Evaluation Settings

Two real-life datasets with one million objects
e Color Structure: MPEG-7 descriptor (64-dim vector + L, distance)

e CoPhlIR: five MPEG-7 descriptors (280 dimensions + a complex
aggregation function, intrinsic dimensionality: 13)

Standard LSH for Ly distance on v1,vs € RY:
o random vector a € RY (entries chosen from a 2-stable distribution)

e scalar b € R chosen from the range [0, w)
o hash function hyp : RY — M, namely h, p(v) = | 24F2|
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Standard LSH Collision Probability

Collision probability with respect to object mutual distance

= lgg @ Color Structure dataset

> ol e standard LSH function family

:;5 0! h(u) for Ly metric

g 20t @ concatenation of K hashes
g(u) = (h(u),- .., hi(u))
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Standard LSH Collision Probability

Collision probability with respect to object mutual distance
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@ Color Structure dataset

@ standard LSH function family
h(u) for Ly metric

probability [%]

@ concatenation of K hashes
g(u) = (h(u), ..., hx(u))

0 100 200 300 400 500 600 700 800
distance r

Average bucket sizes (percentage of dataset size):

concatenation | K=1 | K=2 | K=3 | K=4| K= K =10
avg bucket size 17% 3.2% 0.6% | 0.12% | 0.03% | 0.0007%
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M-Index Collision Probability
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@ M-Index with virtual buckets

@ tunable number of accessed
objects
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M-Index Collision Probability
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o M-Index with virtual buckets @ comparison for similar settings:

@ tunable number of accessed bucket with 3,000 objects

objects
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k-th Nearest Neighbors
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k-th Nearest Neighbors
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k—th NN

Given metric space M = (D, d), a finite set of indexed objects X C D and

two objects p,q € X, let us denote N4 = {u € X|d(p,u) < d(p,q)}.
We say that p, g are k-th nearest neighbors for k € N, iff

min {[No(q)|, INg(p|} = k = 1.

Novak, Kyselak, Zezula (MU Brno) On LSH in Generic Metric Spaces September 18, 2010 13 /17



Collision Probability of kNNs
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@ collision probability with respect
to mutual distances
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Collision Probability of kNNs
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@ collision probability with respect @ collision probability of k-NNs
to mutual distances with respect to k
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Scalability
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@ CoPhlIR dataset

@ fixed virtual-bucket size:
10,000 objects
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Scalability
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o CoPhIR dataset @ collision probability of k-NNs
. ) . with respect to k
@ fixed virtual-bucket size: P
10,000 objects
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Multiple Indexes

@ use multiple indexes: L >1

@ measure recall with respect to total number of accessed objects
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Multiple Indexes

@ use multiple indexes: L >1

@ measure recall with respect to total number of accessed objects
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Conclusions

M-Index demonstrated to be locality-sensitive in terms of LSH theory
we discussed shapes of the collision probability curves

we propose to measure collision probability with respect to k-th NNs

M-Index multi-probe seems more efficient than standard LSH
concatenation

M-Index allows to tune the search costs precisely

Novak, Kyselak, Zezula (MU Brno) On LSH in Generic Metric Spaces September 18, 2010 17 /17



Conclusions

M-Index demonstrated to be locality-sensitive in terms of LSH theory
we discussed shapes of the collision probability curves

we propose to measure collision probability with respect to k-th NNs

M-Index multi-probe seems more efficient than standard LSH
concatenation

M-Index allows to tune the search costs precisely

Future work directions:
@ study influence of multiple indexes (parameter L)
e statistical properties of recall (variance)
@ investigate fault-tolerance gained by multiple indexes
o distributed M-Index
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