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Motivation

A theoretical framework for
metric space indexing.
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General steps of Distance-based

Indexing
1. metric space = Rk

2. multi-dimensional
indexing =2 query

Metrie space

CUbe . d(ps, KA Pivot space
3. dlreCt evaluathn 1 ________I_
Of Cube d':ljj-{l] ........................... ol i"" ................................ r
I KLEEE .
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Pivot space model

e Pivot space F(S, P, d):
— For data set S, pivot set P, and distance d:
Fpa(S) = 1% | %= Fpa(x) = (d(x.py). ..., d(x,pp)). XE S},
* Complete pivot space: P =S

e Theorem 1: ) | |
F(S.P. d)=F(F(S.P.d). F(P. P. d). L*)

— Metric space = R"
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Pivot space model

Dimension reduction for distance-based indexing
answer queries directly in the complete pivot space?
dimension reduction for the complete pivot space?
why is pivot selection important?
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how to select pivots?

PCA in distance-based indexing
Empirical results

Conclusions and future work
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1. Answer queries directly in the
complete pivot space?

Theorem 2: Evaluation of similarity queries in
the complete pivot space degrades the query
performance to linear scan.

e Dimension reduction is inevitable
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2. Dimension reduction for the
complete pivot space?

Theorem 3: If a dimension reduction technique
creates new dimensions based on all existing
dimensions, evaluation of similarity queries
degrades to a linear scan

* Pivot selection: select only existing dimensions

* Metric space indexing vs. high dimensional
indexing
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3. Why is pivot selection important?

e Building index tree: a process of information
loss

— Information available to data partition is
determined by pivot selection

A B C
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Example: 2-d pivot space

dlpz z), p2:(1,1)

dipl, =), pl: (0,0

1] 0 a 1 1.5

Pivots: opposite
corners

(0,0) and (1,1)
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dip2, =), p2(l,0)

1.6
1.4 ¢

1 n.5 1 1.5
dipl,z), pl:i0,0}

Pivots: neighboring
corners
(0,0) and (1,0)
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4. How to select pivots?

* Heuristic: for each new dimension, select the
point with the largest projection on that new
dimension in the pivot space.

— Using of mathematical tools in R"

— Yet what is a good objective function for pivot
selection?

MNIHMPCC
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PCA for pivot selection

* PCA for the complete pivot space.

* Apply the heuristic: for each PC, find the most
similar dimension(point) in the complete pivot
space

e Start with corners (farthest first traversal) as
candidates
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Estimate the intrinsic dimension

1. Pair wise distances

2. |Range(q,r)| ~ rd

— Linear regression: log(|Range(q,r)|) and log(r)

3. Where eigenvalue changes the most:
— argmax; (A, / A,,), 0.015 <A,,; <0.035, ), A, > 0.6

* Yet how to define the intrinsic dimension?
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Query performance
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Intrinsic dimension

. Domain Distance Intrinsic dimension
Workload di . acl —
lnension oracle n/2e regression argmax;(hi/hi+1)
L* 1.72d - 1.81 0.73d+0.88 | d+1 (d#3.4). 4.7 (d=3. 4)
Vector 1 1 "
o D=1-20 (L d 0.75d + 0.84 d+1
(uniform) :
L 1.41d-0.71 0.78d - 0.72 d+1
L” 0.244d + 0.446 0.676d + 0.62 d+1
Vector D =1-10 ] 1004 7374 + 3 n
(exponential) - L1 0.499d - 0.0006 0.737d +0.482 |d+l
L 0.427d +0.113 0.72d + 0.534 d+1
L” 0.644d +0.559 0.858d +0.325 |d+l1
Vector _ ]
- D=1-10 |L 0.875d + 0.002 0.863d+0.32 d+1
(normal) 1
L* 0.989d - 0.145 0.872d+0.305 | d+l1
Texas 2 L*/L'/ L 1.29/1.42/0.87 1.54/1.54/1.51 |3
Hawaii 2 L* /Lt / L 0.31/0.26/0.36 1.47/1.45/1.44 |2
Protein gq-gram | q=6-18 | Weighted edit distance 2.46q+2.32 -0.08q +4.16 qtl (q<18). 17 (q=18)
DNA g-gram |q=9-18 |Hamming distance 1.27q+0.37 0.14q + 2.52 qtl (g<18). 21 (q=18)
Mass-spectra | 40,000 Fuzzy cosine distance 0.62 1.23 2
Image 66 Linear combination of L-norms | 5.26 4.85 5

.
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Conclusions and future work

Established a parallel between metric space
indexing and high dimensional indexing

More mathematical tools for pivot selection?

Objective function of pivot selection?

Pivot space model for data partition?

Intrinsic dimension?

Optimal num of pivots vs. intrinsic dimension?
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