Roberto Uribe-Paredes 1,2 Gonzalo Navarro 3

1Depto. de Ingeniería en Computación, Universidad de Magallanes, Chile

2Grupo de Bases de Datos - UART, Universidad Nacional de la Patagonia Austral, Río Turbio, Argentina

3Dept. of Computer Science, University of Chile, Chile
E-mail: roberto.uribeparedes@gmail.com, gnavarro@dcc.uchile.cl

September 4, 2009
We introduce a novel metric space search data structure called *EGNAT*, which is fully dynamic and designed for secondary memory. The *EGNAT* implements deletions using a novel technique dubbed *Ghost Hyperplanes*.
Similarity Search

- Range search
- The k nearest neighbors
Construction Methods

- Based on Pivots
 \[|d(q, p_i) - d(x, p_i)| > r \Rightarrow d(q, x) > r \]

- Based on Clustering or compact partitioning
 - Voronoi Partitioning Criterion (or Hyperplanes)
 \[d(q, c_j) > d(q, c_i) + 2r \]
 - Covering Radius Criterion
 \[d(q, c_i) - r > rc(c_i) \]
This is a new method based on the GNAT [Brin95], that is based on the GHT (Generalized Hyperplane Tree) [Uhlmann91].

It is based on both clustering and used the Hyperplanes and Covering radius criteria.

It is dynamic and enhanced for Secondary Memory.
Each child p_i maintains a table of distance ranges toward the rest of the sets D_{p_j},
\[
\text{range}_{i,j} = (\min\{d(p_i, x), x \in D_{p_j}\}, \max\{d(p_i, x), x \in D_{p_j}\}).
\]
Two types of nodes:

- *buckets* (leaves)
- *gnats* (internal nodes)
Search

- **buckets** (leaves)

 If $|d(x, p) - d(q, p)| > r$ or

- **gnats** (internal nodes)

 $\text{range}(p_0, q) \cap \text{range}(p_0, D_{p_x}) = \emptyset$

 then we know that $d(x, q) > r$ without computing that distance.
Ghost Hyperplanes

- Partition of the space before and after a deletion.
Choosing the Replacement

- The nearest neighbor.
- The nearest descendant.
- The nearest descendent located in a leaf.
- A promising descendant leaf.
- An arbitrary descendant leaf.
Constructions Costs and Deletion Costs

Aggregated construction costs (left) and individual deletion costs when deleting the first 10% (middle) and 40% (right) of the DB.

Roberto Uribe-Paredes, Gonzalo Navarro

Comparative Methods

Ratio between methods, in deletion (left, middle) and search (right) costs.
Search costs after construction and after deleting and reinserting part of the database.

Roberto Uribe-Paredes, Gonzalo Navarro

Construction Costs on Secondary Memory

Construction costs of the secondary memory variants: distance computations, disk reads and writes.

Roberto Uribe-Paredes, Gonzalo Navarro

Search costs of the secondary memory variants: distance computations and disk reads.
Deletion and Search Costs on Secondary Memory

Deletion costs in secondary memory, deleting 10% (left) and 40% (middle). On the right, disk reads for searching after deletions.
Conclusions

- We have presented a dynamic and secondary-memory-bound data structure based on hyperplane partitioning, *EGNAT*.
- Experimental results show that, as expected, the *M-tree* achieves better disk page usage and consequently fewer I/O operations at search time, whereas our *EGNAT* data structure carries out fewer distance computations.
- We have presented a novel mechanism to handle deletions based on *ghost hyperplanes*.
- The method of ghost hyperplanes is applicable to other similar data structures.