
List of Twin Clusters:
a Data Structure for Similarity

Joins in Metric Spaces

Rodrigo Paredes Nora Reyes

Universidad Nacional
de San Luis

Supported in part by Millennium Nucleus Center for Web Research, Grant P04-067-F, Mideplan, Chile;
and AECI A/8065/07.

Introduction

We focus on a particular case of the
similarity join primitive:

Given two sets A = {a1,a2,…,a|A|} ⊆ X and
B = {b1,b2 …,b|B|} ⊆ X

= {(ai,bj), ai ∈ A, bj ∈ B, d(ai,bj) ≤ r }

Find all the object pairs at distance at
most r (if A=B, is called similarity self join).

Introduction

Some applications: data mining, data
cleaning, and data integration.

This version of similarity join translates into
solving several range queries.

Similarity Joins

AA BB
r

Range queries with threshold r for all element in A

List of Clusters (LC)

The LC splits the space into zones.

Each zone has a center c and stores both its
radius rp and the bucket I of internal objects.

The center ball (c,rp) = {x ∈ X, d(c, x)≤ rp }.

List of Clusters (LC)

c1

rp1
I1

(c1, rp1, I1)

c2rp2

I2

c3

rp3

I3

(c2, rp2, I2) (c3, rp3, I3)
E1 E2

LC: solving queries

c

rp

q
r

d(c,q)

We search exhaustively in I, and
continue searching in E.

c

rp

q
r

d(c,q)

We search
exhaustivel
y in I, but
we do not
continue
searching

in E.
q r

c

rp

d(c,q)

We do
not

search in
I, but we
continue

searching
in E.

Similarity Joins

Given A,B ⊆ X, the naive approach to
compute the similarity join uses |A|⋅|B|
distance computation.

This is usually called the Nested Loop.

A natural approach consists in indexing one
or both sets independently, and then solving
range queries for the involved elements.

List of Twin Clusters (LTC)

We propose to index both sets jointly: solving
the similarity join by indexing the datasets A
and B in a single data structure.

We do not perform distance computations
between objects of the same set.

The LTC is based on the List of Clusters.

List of Twin Clusters (LTC)

We have chosen to use clusters with fixed
radius.

LTC considers a list of overlapping clusters,
which we call twin clusters.

Most of relevant objects would belong to the
twin cluster of the object we are considering.

List of Twin Clusters (LTC)

cA

cB

The twin clusters with
centers cA and cB

R

List of Twin Clusters (LTC)

We solve range queries for objects from one
set retrieving relevant objects from the other.

We suppose:
We are computing range queries for elements in A,
|A| ≥ |B|.

Range Queries with LTC

We have to process three kinds of objects:
cluster centers, regular objects (inside
clusters), and non-indexed objects (the rest).

We use the triangle inequality and all the
distances in the index (the list of twin
clusters, the distances among centers, and the
distances to closest and furthest centers) to
avoid distance computations.

Computing the LTC-join

Given the datasets A and B, and a radius R, we
compute the LTC index.

Then, with the join threshold r we actually
compute range queries:

cluster centers: previous clusters of the list.
regular objects: the list and distances among centers.
non-indexed objects: distances among centers and
distances to closest and furthest centers.

Experimental Evaluation

We compare our proposal against:
The Nested loop.

The simple join algorithm having a LC built for one

database: LC-join.

Indexing both databases with LC with a join

algorithm that uses all the information from the

indices to improve the join cost: LC2-join.

Experimental Evaluation

Three different pairs of real world databases
from two metric spaces:

Face images: 1,016 761-dimensional feature
vectors from a face image database.
Strings: a dictionary of words.

A subset of English words with a subset of Spanish
words.
The same English subset with a subset of the
vocabulary of terms from a document collection.

Experimental Evaluation

We need to fix the radius before building the
LC and LTC.

We choose the radius R which obtains better
join cost for each alternative.

R should be greater than or equal to the
largest r used in the similarity join:

Experimental Evaluation

Experimental Evaluation

Experimental Evaluation

Experimental Evaluation

The better results are obtained with the
building radius R closest to the greatest value
of r considered.

The construction costs of the LTC and the LC
over one of the databases are similar.

Experimental Evaluation

Experimental Evaluation

Experimental Evaluation

Experimental Evaluation

The LTC-join outperforms largely the LC-join
and LC2-join in two of the database pairs.

For the other pair LTC largely improves over
nested loop, but LC and LC2 beat us.

This non-intuitive behavior can be explained
by taking into account the amount of non-
indexed elements.

Conclusions

We show a new approach, LTC-join, for
similarity join by indexing both datasets
jointly.

Our results show speedups over LC-join and
LC2-join.

LTC index stands out as a practical and
efficient data structure to solve a particular
case of similarity join.

Work in Progress

The similarity self join.
Improve the LTC by exploiting internal
distances.
The center selection.
A version of the LTC similar to the recursive
list of clusters.
Researching on alternatives to manage the
non-indexed objects.

	List of Twin Clusters: �a Data Structure for Similarity �Joins in Metric Spaces
	Introduction
	Introduction
	Similarity Joins
	List of Clusters (LC)
	List of Clusters (LC)
	LC: solving queries
	Similarity Joins
	List of Twin Clusters (LTC)
	List of Twin Clusters (LTC)
	List of Twin Clusters (LTC)
	List of Twin Clusters (LTC)
	Range Queries with LTC
	Computing the LTC-join
	Experimental Evaluation
	Experimental Evaluation
	Experimental Evaluation
	Experimental Evaluation
	Experimental Evaluation
	Experimental Evaluation
	Experimental Evaluation
	Experimental Evaluation
	Experimental Evaluation
	Experimental Evaluation
	Experimental Evaluation
	Conclusions
	Work in Progress

