List of Twin Clusters: a Data Structure for Similarity Joins in Metric Spaces

Rodrigo Paredes

Nora Reyes

Supported in part by Millennium Nucleus Center for Web Research, Grant P04-067-F, Mideplan, Chile; and AECI A/8065/07.
Introduction

We focus on a particular case of the similarity join primitive:

Given two sets $A = \{a_1, a_2, \ldots, a_{|A|}\} \subseteq X$ and $B = \{b_1, b_2, \ldots, b_{|B|}\} \subseteq X$

$$A \bowtie_r B = \{(a_i, b_j), a_i \in A, b_j \in B, d(a_i, b_j) \leq r \}$$

Find all the object pairs at distance at most r (if $A=B$, is called similarity self join).
Introduction

- Some applications: data mining, data cleaning, and data integration.
- This version of similarity join translates into solving several range queries.
Similarity Joins

Range queries with threshold \(r \) for all element in \(A \)
List of Clusters (LC)

- The LC splits the space into zones.

- Each zone has a center c and stores both its radius r_p and the bucket I of internal objects.

- The center ball $(c, r_p) = \{ x \in X, \ d(c, x) \leq r_p \}.$
List of Clusters (LC)

\((c_1, r_{p1}, l_1) \) \(E_1 \) \((c_2, r_{p2}, l_2) \) \(E_2 \) \((c_3, r_{p3}, l_3) \)
We search exhaustively in \(I \), and continue searching in \(E \).

We do not search in \(I \), but we continue searching in \(E \).

We search exhaustively in \(I \), but we do not continue searching in \(E \).
Similarity Joins

- Given $A, B \subseteq X$, the naive approach to compute the similarity join uses $|A| \cdot |B|$ distance computation.

- This is usually called the *Nested Loop*.

- A natural approach consists in indexing one or both sets independently, and then solving range queries for the involved elements.
We propose to index both sets jointly: solving the similarity join by indexing the datasets A and B in a single data structure.

- We do not perform distance computations between objects of the same set.

- The LTC is based on the *List of Clusters*.
List of Twin Clusters (LTC)

- We have chosen to use clusters with fixed radius.

- LTC considers a list of overlapping clusters, which we call *twin clusters*.

- Most of relevant objects would belong to the twin cluster of the object we are considering.
List of Twin Clusters (LTC)

The twin clusters with centers c_A and c_B
List of Twin Clusters (LTC)

- We solve range queries for objects from one set retrieving relevant objects from the other.

- We suppose:
 - We are computing range queries for elements in A,
 - $|A| \geq |B|$.
Range Queries with LTC

- We have to process three kinds of objects: cluster centers, regular objects (inside clusters), and non-indexed objects (the rest).

- We use the *triangle inequality* and all the *distances in the index* (the list of twin clusters, the distances among centers, and the distances to closest and furthest centers) to avoid distance computations.
Computing the LTC-join

- Given the datasets A and B, and a radius R, we compute the LTC index.

- Then, with the join threshold r we actually compute range queries:
 - cluster centers: previous clusters of the list.
 - regular objects: the list and distances among centers.
 - non-indexed objects: distances among centers and distances to closest and furthest centers.
Experimental Evaluation

- We compare our proposal against:
 - The *Nested loop*.
 - The simple join algorithm having a LC built for one database: LC-join.
 - Indexing both databases with LC with a join algorithm that uses all the information from the indices to improve the join cost: LC2-join.
Experimental Evaluation

- Three different pairs of real world databases from two metric spaces:
 - Face images: 1,016 761-dimensional feature vectors from a face image database.
 - Strings: a dictionary of words.
 - A subset of English words with a subset of Spanish words.
 - The same English subset with a subset of the vocabulary of terms from a document collection.
Experimental Evaluation

- We need to fix the radius before building the LC and LTC.

- We choose the radius R which obtains better join cost for each alternative.

- R should be greater than or equal to the largest r used in the similarity join: $A \bowtie_r B$
Experimental Evaluation
Experimental Evaluation

Join Costs between Spanish and English dictionaries

- LTC, radius 3
- LTC, radius 4
- LTC, radius 5
- LTC, radius 6

Distance evaluations x 1,000,000

Threshold used for join
Experimental Evaluation

Join Costs between Vocabulary and English dictionary

- LTC join, radius 3
- LTC join, radius 4
- LTC join, radius 5
- LTC join, radius 6

Distance evaluations x 1,000,000

Threshold used for join
Experimental Evaluation

- The better results are obtained with the building radius R closest to the greatest value of r considered.

- The construction costs of the LTC and the LC over one of the databases are similar.
Experimental Evaluation

Join Costs bet. FACES762/254 feature vectors

Distance evaluations

Threshold used for join

LC-pin, radius 0.38
LC2-pin, radius 0.38
LTC-pin, radius 0.38
Experimental Evaluation

Join Costs between Spanish and English dictionaries

- LC-join, radius 4
- LC2-join, radius 3
- LTC-join, radius 3

Distance evaluations x 1,000,000

Threshold used for join
Experimental Evaluation

Join Costs between English dictionary and Vocabulary

Distance evaluations x 1,000,000

LC-join, radius 4 (green)
LC2-join, radius 3 (blue)
LTC-join, radius 3 (red)

Threshold used for join

1 2 3
Experimental Evaluation

- The LTC-join outperforms largely the LC-join and LC2-join in two of the database pairs.

- For the other pair LTC largely improves over nested loop, but LC and LC2 beat us.

- This non-intuitive behavior can be explained by taking into account the amount of non-indexed elements.
Conclusions

- We show a new approach, LTC-join, for similarity join by indexing both datasets jointly.

- Our results show speedups over LC-join and LC2-join.

- LTC index stands out as a practical and efficient data structure to solve a particular case of similarity join.
Work in Progress

- The similarity self join.
- Improve the LTC by exploiting internal distances.
- The center selection.
- A version of the LTC similar to the recursive list of clusters.
- Researching on alternatives to manage the non-indexed objects.